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ABSTRACT
In the solution of a system of linear equations, there exist many methods most of which are not fixed 
point iterative methods. However, this method of Sidel’s iteration ensures that the given system of the 
equation must be contractive after satisfying diagonal dominance. The theory behind this was discussed 
in sections one and two and the end; the application was extensively discussed in the last section.
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INTRODUCTION

This section is concerned with methods for solving 
the following system of n simultaneous equations 
in the n unknown x1, x2,…, xn:
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However, if these functions are linear in the x’s, 1 
can be rewritten (Chika[1]) as:
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More concisely, we (Carnahan[2]) have

 Bx y=  (3)

in which B is a matrix of coefficients, 
y = (y1,y2,y3, …yn) is the right-hand side vector 
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and x = (x1,x2,x3,… yn) is the solution vector. 
Assuming negligible computational round-off 
error, direct methods considered for this work 
are the Seidel’s method. This iterative technique 
is more appropriate when dealing with a large 
number of simultaneous equations (typically of 
the order of 100 equations or more), which will 
often possess certain other special characteristics. 
However, this particular Seidel’s iterative method 
is as in the following theorem.

Theorem 1 (the main result)

Let x = f(x) be a well-defined map in the metric 
space (X,ρ) such that
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Satisfies the Banach’s contraction mapping 
principle then x xn=  generated by
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for 1 ≤ i ≤ n and 1 ≤ k when
x x x x xn0
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Is the fixed point for 4
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Proof

Let x* be the unique fixed point, then by the 
contraction principle,

xn = T(xn)
However, x1 = T(x0), then
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Hence, we have constructed a sequence {xn}n=0 of 
linear operators for the Seidel’s iterative method 
defined in the metric space (X,ρ). We now 
establish that the above-generated sequence is 
Cauchy. First, we compute ρ(xn,xn+1) = ρ(T(xn,xn+1)) 
and by 1.1.3, it is
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Hence,

 KT x x K T x xn n
n, ,−( ) ≤ ( )1 0 1  (7)

Now, showing that xn is Cauchy let m > n, then
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Since the series on the right-hand side is a 
geometric progression with a common ratio < 1, 
its sum to infinity ≤ −

1

1 K
 so from the above, we 

have that
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As n → ∞ since K < 1.
Hence, the sequence is Cauchy in (X,ρ) since it is 
complete and {xn} converges to a point in X.
Let xn → x*as n → ∞.

Since T is a contraction and continuous it follows 
that T(xn) → T(x*) as n → ∞.
However, T(xn) = xn+1, a contraction and continuous 
it follows that progression with a common ratio 
number of simultaneous this work is the Seidel

xn+1 = T(xn) = T(x*)
Since limits are unique in a metric space and from 
above, we obtain

T(x*) = x*
We shall now prove that T has a unique fixed point.
Suppose for the contraction there exists y* ∈ X 
such that y* = x* and T(x*) = y*
Then

 ( ) ( ) ( )( ) ( )* * * * * *, , ,x y T x T y kT x y = ≤

So that

 k T x y−( ) ( ) ≥1 0* *,

and

 T x y* *,( ) = =0 

We then divide by it to get k − 1 ≥ 0, i.e., k ≥ 1 
which is a contradiction.
Hence, x* = y* and the fixed point is unique. 
Therefore, x xn=  generated by Seidel’s method
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Is a fixed point iterative method for the system of 
equations
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Hence, T has a unique fixed point in (X,ρ)

CONVERGENCE ANALYSIS, AN 
EXPLANATION TO THE ABOVE MAIN 
RESULT

To investigate the conditions for the convergence 
of the Seidel’s iterative method, we first 
phrase the iteration in terms of the individual 
components. Let xik denote the kth approximation 
to the ith component of the solution vector 
x = (x1,x2,…, xn)

t. Let (x10,x20,…,xn0)
t be an 

arbitrary initial approximation (though as with 
the Jacobi method, if a good estimate is known, 
it should be used for efficiency).[3-6] Let A and v 
be given and define
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likewise interpreted as zero.
Write A = AL + AR where (Eziokwu[6])
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Thus, AL is a strictly lower-triangular matrix whose 
sub-diagonal entries are the elements of A in their 
natural positions. A similar description applies to 
AR that if xk = [x1k,x2k,…,xnk]

t,

 x A x A x vk L k R k= + +−1  (10)

This can be paraphrased as

 x I A A x I Ak L R k L= −( ) + −( )−
−

−1

1

1
 (11)

which is then of the Jacobi form. This 
(Chidume[5]) means the necessary and sufficient 
condition for the convergence is that the 
eigenvalues of (I − AL)

−1 be less in modulus.[7] 
The eigenvalues of (I − AL)

−1 AR by solving det 
((I − AL)

−1 AR − λI) = 0.
Thus, the Seidel’s iterative process converges if 
all the zeros of the determinant of
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are <1 in absolute value.

Since a i nii = ≤ ≤0 1, , while aij = −bij/bi the 
determinant of 12 has the same zero determinants 
of
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It develops that conditions analogous to (9) proved 
sufficient to guarantee convergence
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The first of these may be demonstrated as 
previously stated that since
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B is nonsingular, thus a solution vector x exists 
and x = Ax + v, whence (Argyros[4])
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in which aij = −bij/bii. Subtracting this yields
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Let ek denote the maximum of the numbers |xik − xi| 
as i varies. Then,
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Substituting we (Altman[3]) have

 2 2 21 1 1k k kx x a e e− −− ≤ ≤  (19)

Continuing as indicated gives |xik − xi| ≤ µek−1,1≤i≤n. 
This means, of course, that (Friegyes and Nagy[8]) 
|xik−xi| ≤ µke0,whence 0 1, lim ik ik

x x
→∞

< < = .

More interesting still than the sufficiency 
conditions of 18 is the fact that convergence 
always takes place if the matrix B of 13 is positive 
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definite. To demonstrate this, let B L L Lt= + +  
where D D=  is the matrix diag b b bnn11 22, , ,…( )  
and L is the strictly lower-triangular matrix formed 
from the elements of B below the diagonal. 
Starting from 14, it is seen that a necessary and 
sufficient condition for convergence is that all 
eigenvalues of (I − AL)

−1 AR be of modulus less 
than unity. However, AL = −D−L L and AR = −D−1L*. 
Thus, I A A D L LL R−( ) = − +( )− −1 1 * . The 

eigenvalues of this matrix, except for sign are 
those of D L L+( )−1 * , which we consider instead. 
Let λi be an eigenvalue of this matrix and let wi be 
the corresponding eigenvector. Since B is positive 
definite,[9]
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Since D is itself positive definite, (wi,Dwi) > 0; 
hence, 1 0− > i i or i <1 . Thus, sufficiency 
has been shown. It is also possible to prove that if 
the matrix B is Hermitian and all diagonal elements 
are positive, then convergence requires that B be 
positive definite.
The solution of systems of equation by iterative 
procedures such as the Jacobi and Seidel’s iterative 

methods is sometimes termed relaxation (the errors 
in the initial estimate of the solution vector are 
decreased or relaxed as calculation continues). The 
Seidel’s iterative method and related methods are 
used extensively in the solution of large systems 
of linear equations, generated as the result of the 
final difference approximation of partial differential 
equations.

APPLICATION OF SEIDEL’S ITERATIVE 
METHOD IN THE SOLUTION OF 
SYSTEMS OF LINEAR EQUATIONS

Problem statement

Write a program that implements the Seidel iterative 
method described previously for solving the 
following system of n simultaneous linear equations:
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in which they aij are constants.

Method of solution

To reduce the number of divisions required in 
the calculations, the coefficients of 23 are first 
normalized by dividing all elements in row i by aii, 
i = 1,2,…,n, to produce an augmented coefficient 
matrix of the form[8,10]
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Where, aij
’  = aij/aii

In terms of this notation, the approximation to the 
solution vector after kth iteration,

x x x xk k k nk

t= …[ ]1 2, , ,

is modified by the algorithm
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to produce the next approximation
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Since, in the Seidel’s iterative method the new 
value xi,k+1 replaces the old values xik as soon as 
computed the iteration subscript k can be omitted 
and (25) becomes
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in which the most recently available xj values are 
always used on the right-hand side. Hopefully, 
the xi values computed by iterating with 26 will 
converge to the solution of (23).
The convergence criterion is,

 x x i ni k ik, , , , ,+ − < = …1 1 2  (27)

that is, no element of the solution vector may 
have its magnitude changed by an amount greater 
than \varepsilon as a result of one Gauss-Seidel 
iteration. Since convergence may not occur, an 
upper limit on the number of iterations. kmax is also 
specified as in the FORTRAN implementation 
below which flowchart scheme can be seen in 
the appendix before references.[11-13]

FORTRAN
Implementation
Program Symbol Definition
A n × (n + 1) augmented 

coefficient matrix, 
containing elements aij

ASTAR, ASTAR Temporary storage 
locations for elements of 
A and X, respectively

EPS Tolerance used in 
convergence test, ε 

FLAG A flag used in convergence 
testing; it has the value 1
for successful convergence 
and the value 0 otherwise

ITER Iteration counter, k
ITMAX The maximum number of 

iterations allowed kmax

N Number of simultaneous 
equations, n

X Vector containing the 
elements of the
current approximation to 
the solution vector xk

Program
Listing
C APPLIED NUMERICAL METHODS, EXAMPLE 3.3
C SEIDEL ITERATION FOR N SIMULTANEOUS LINEAR EQUATIONS
C THE ARRAY A CONTAINS THE N X N + 1 AUGMENTED COEFFICIENT MATRIX
C THE VECTOR X CONTAINS THE LATEST APPROXIMATION TO THE SOLUTION
C THE COEFFICIENT MATRIX SHOULD BE DIAGONALLY DOMINANT AND
C PREFERABLY POSITIVE DEFINITE. ITMAX IS THE MAXIMUM NUMBER OF
C ITERATIONS ALLOWED. EPS IS USED IN CONVERGENCE TESTING. IN
C TERMINATING THE ITERATIONS, NO ELEMENT OF X

MAY UNDERGO A MAGNITUDE
C CHANGE GREATER THAN EPS FROM ONE ITERATION TO THE NEXT

   INTEGER FLAG
   DIMENSION A (20,20), X (20)

C
C ......READ AND CHECK INPUT PARAMETERS
C COEFFICIENT MATRIX AND STARTING VECTOR......

1   READ (5,100) N, ITMAX, EPS
     WRITE (6,200) N, ITMAX, EPS
     NP1 = N + 1
      READ (5,101) ((A (I, J), J = 1, NP1), I = 1, N)
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     READ (5,101) (X (I), I = 1, N)
     DO 2 I = 1, N
2  WRITE (6,201) (A (I, J), J = 1, NP1)
     WRITE (6,202) (X (I), I = 1, N)

C
C ......NORMALIZE DIAGONAL ELEMENTS IN EACH ROW......

DO 3 I = 1, N
ASTAR = A (I, I)
     DO 3 J = 1, NP1
3 A (I, J) = A (I, J)/ASTAR

C
C ......BEGIN SEIDEL ITERATIONS......

  DO 9 ITER = 1, ITMAX
  FLAG = 1
  DO 7 I = 1, N
  XSTAR = X (I)
  X (I) = A (I, NPI)

C
C ......FIND NEW SOLUTION VALUE, X (I)......

  DO 5 J = I, N
  IF (I .EQ. J) GO TO 5
  X (I) = X (I) – A (I, J)*X (J)
5 CONTINUE

C
C ......TEST X (I) FOR CONVERGENCE......

   IF (ABS (XSTAR – X (I)) .LE.   EPS) GO TO 7
  FLAG = 0
7 CONTINUE
  IF (FLAG .NE. 1) GO TO 9
      WRITE (6, 203) ITER, (X (I),     I = 1, N)
   GO TO 1
9 CONTINUE

C ......REMARK IF METHOD DID NOT CONVERGE......
   WRITE (6,204) ITER, (X (I), I = 1, N)
  GO TO 1

C
C ......FORMATS FOR INPUT AND OUTPUT STATEMENTS......

 100 FORMAT (6X, 14, 16X, 14, 14X, F10.6)
101 FORMAT (10X, 6F10.5)
 200 FORMAT (17H1 SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS BY 
GAUSS-SEIDEL METHOD, WITH/1H0, 1 5X, 9HN = 14/
 2 6X, 9HITMAX = , 14/6X, 9HEPS = , F10.5/47H0 THE COEFFICIENT
3 MATRIX A (1,1).A (N + 1, N + 1) IS)
201 FORMAT (1H0, 11F10.5)
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202 FORMAT (36 H0 THE STARTING VECTOR
X (1).X (N) IS/(H0, 10F10.5))
203 FORMAT (35H0 PROCEDURE CONVERGED, WITH ITER = , 14/
 1 32H0 SOLUTION VECTOR X (1).X (N) IS/(1H0, 10F10.5))
204 FORMAT (16H0 NO CONVERGENCE/10H0 ITER = , 14/
 1 31H0 CURRENT VECTOR X (1).X (N) IS/(1H0, 10F10.5)) CEND

Program Listing (Continued)
Data
N  =  4   ITMAX = 15   EPS = 0.0001
A (1,1) = 5.0  1.0  3.0  0.0  16.0  1.0
  4.0  1.0  1.0  11.0  -1.0  2.0
  6.0  -2.0  23.0  1.0  -1.0  1.0
  4.0  -2.0 
X (1) = 1.0  2.0  3.0  4.0
N  =  4   ITMAX = 15   EPS = 0.0001
A (1,1) = 5.0  1.0  3.0  0.0  16.0  1.0
  4.0  1.0  1.0  11.0  -1.0  2.0
  6.0  -2.0  23.0  1.0  -1.0  1.0
  4.0  -2.0
X (1) = 50.0  50.0  50.0  50.0
N  =  6   ITMAX = 50   EPS = 0.0001
A (1,1) = 4.0  -1.0  0.0  -1.0  0.0  0.0
  100.0  -1.0  4.0  -1.0  0.0  -1.0
  0.0  0.0  0.0  -1.0  4.0  0.0
  0.0  -1.0  0.0  -1.0  0.0  0.0
  4.0  -1.0  0.0  100.0  0.0  -1.0
  0.0  -1.0  4.0  -1.0  0.0  0.0
  0.0  -1.0  0.0  -1.0  4.0  0.0
X (1) = 0.0  0.0  0.0  0.0  0.0  0.0

Computer Output
Results for the 1st Data set
SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS BY SEIDEL’S ITERATIVE 
METHOD WITH -
 N = 4
 ITMAX = 15
 EPS = 0.00010
THE COEFFICIENT MATRIX A (1,1)...A (N + 1, N + 1) IS
5.00000  1.00000  3.00000  0.0  16.00000
1.00000  4.00000  1.00000  1.00000  11.00000
-1.00000  2.00000  6.00000  -2.00000  23.00000
1.00000  -1.00000  1.00000  4.00000  -2.00000
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THE STARTING VECTOR X (1)...X (N) IS
 1.00000  2.00000  3.00000  4.00000
PROCEDURE CONVERGED WITH ITER = 12
SOLUTION VECTOR X (1)...X (N) IS
 0.99998  2.00000  2.99999  -0.99999
THE STARTING VECTOR X (1)...X (N) IS
 50.00000  50.00000  50.00000  50.00000
PROCEDURE CONVERGED WITH ITER = 13
SOLUTION VECTOR X (1)...X (N) IS
 1.00002  2.00000  3.00001  -1.00001
Partial Results for the 2nd Data Set (Same Equations as 1st Set)
Results for the 3rd Data Set
SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS BY SEIDEL’S ITERATIVE 
METHOD, WITH
N      = 6
ITMAX    = 50
EPS      = 0.00010
THE COEFFICIENT MATRIX A (1,1)...A (N + 1, N + 1) IS
4.00000 -1.00000 0.0  -1.00000 0.0  0.0  100.00000
-1.00000 4.00000 -1.00000 0.0  -1.00000 0.0  0.0
0.0  -1.00000 4.00000 0.0  0.0  -1.00000 0.0
-1.00000 0.0  0.0  4.00000 -1.00000 0.0  100.00000
0.0  -1.00000 0.0  -1.00000 4.00000 -1.00000 0.0
0.0  0.0  -1.00000 0.0  -1.00000 4.00000 0.0
THE STARTING VECTOR X (1)...X (N) IS
0.0 0.0 0.0  0.0 0.0 0.0
PROCEDURE CONVERGED WITH ITER = 13
SOLUTION VECTOR X (1).X (N) IS
38.09517 14.28566 4.76188 3.09518  14.28568  4.76189

A simple illustrative example

Use the Seidel’s iterative method discussed above 
to illustrate the solution of the simple system of 
equations below.

 

10 12

2 10 13

2 3 10 15

1 2 3

1 2 3

1 2 2

x x x

x x x

x x x

+ + =
+ + =
+ + =

Solution

Since the diagonal dominance is satisfied and for 
i = 1, we have

 

x x x

x x x

x

i i

i i i

1 2 3
1

2 1 3
1

0 1 0 1 1 2

0 2 0 1 1 3

( ) −( )

( ) ( ) −( )

= − − +

= − − +

. . .

. . .

33 1 20 2 0 3 1 5i i ix x( ) ( ) ( )= − − +. . .

with x0 1 2 1 3 1 5= ( ). , . , . which gave rise to the table 
of results below in which
x x* , ,= = ( )10 1 1 1 is the fixed point for the given 
problem in the above example.

χ1 χ2 χ3

0 1.2 1.3 1.5

1 0.92 0.966 1.1262

2 1.00078 0.997224 1.0006768

3 1.00020992 0.999890336 0.999990915

4 1.000011875 1.000000351 0.999997519

5 1.000000213 1.000000206 0.999999895

6 0.999999989 1.000000013 0.999999998

7 0.999999998 1.000000001 1.000000001

8 0.999999999 0.999999999 1.000000001

9 0.999999999 1.000000000 1.000000000

10 1.000000000 1.000000000 1.000000000
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Above table generated on manual solution 
of parent example above as computed by the 
corresponding Author, Eziokwu, and test runned 

using the FORTRAN programming package 
implementation in page 10 above, under the 
supervision of the Co-author, Chika

APPENDIX FOR A FLOW DIAGRAM OF THE ABOVE FORTRAN IMPLEMENTATION 
PROGRAM
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