
www.ajms.com  32

ISSN 2581-3463

RESEARCH ARTICLE

On the Numerical Fixed Point Iterative Methods of Solution for the Boundary 
Value Problems of Elliptic Partial Differential Equation Types

Eziokwu C. Emmanuel, Anokwute Chinelo
Department of Mathematics, Michael Okpara University of Agriculture, Umudike, Abia, Nigeria

Received: 01-08-2018; Revised: 10-09-2018; Accepted: 09-11-2018

ABSTRACT
In this research work, we have studied the finite difference method and used it to solve elliptic partial 
differential equation (PDE). The effect of the mesh size on typical elliptic PDE has been investigated. The 
effect of tolerance on the numerical methods used, speed of convergence, and number of iterations was 
also examined. Three different elliptic PDE’s; the Laplace’s equation, Poisons equation with the linear 
inhomogeneous term, and Poisons equations with non-linear inhomogeneous term were used in the study. 
Computer program was written and implemented in MATLAB to carry out lengthy calculations. It was 
found that the application of the finite difference methods to an elliptic PDE transforms the PDE to a system 
of algebraic equations whose coefficient matrix has a block tri-diagonal form. The analysis carried out shows 
that the accuracy of solutions increases as the mesh is decreased and that the solutions are affected by round 
off errors. The accuracy of solutions increases as the number of the iterations increases, also the more efficient 
iterative method to use is the SOR method due to its high degree of accuracy and speed of convergence.
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INTRODUCTION OF BASIC CONCEPTS

The form of the occurrence of many physical 
problems involving functions of two independent 
variables motivates one to consider the form, 
accuracy and the ease in obtaining such solutions, 
not just the mere fact of the existence of the solution.
Many problems of physical science and 
engineering which involves functions of two 
independent variables are formulated as partial 
differential equation (PDE).
A PDE is an equation containing partial derivatives. 
The dependent variable of any partial differential 
equation must be a function of at least two 
independent variables otherwise partial derivative 
would not arise, for example, the equations
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are typical examples of PDE of the first- and 
second-order, respectively? X and Y being the 
independent variable and U = U(x,y) being the 
dependent variable. To obtain useful information 
about the physical situation modeled by PDE, 
it is necessary to solve the equation. It is 
obvious that many PDEs arising in engineering 
applications cannot be solved in closed form 
by known analytical methods (G. Stephenson, 
1968). If a solution is needed in such cases, 
numerical methods must be used. Furthermore, 
many times it may be more convenient to 
employ a numerical method to solve P.D.F even 
though a close form of the solution is available. 
This is so when the difficulty of computing 
values from the closed form solution exceeds 
that using a conventional numerical method for 
solving equations.
At present, the availability of digital computers 
makes the application of the numerical method 
to PDE easier to handle. Therefore, it is of best 
interest to learn how to obtain accurate and 
meaningful numerical solutions to PDE s. A wide 
variety of problem of physics and engineering are 
modeled using second-order linear PDE. A linear 
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PDE is said to be linear if it is of the first degree in 
the dependent variables. For example;

Laplace’s equation

 ∇ =2 0u  (3)

This Strauss (1992) describes the steady-state 
temperature distribution of a solid that varies from 
point to point without time regulation as well as 
the gravitational potential in a change free region 
and applies to the flow of an in compressive fluid 
with no sources.

The heat equation
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The function U(x,t) of Equation (4) represents 
the temperature. U in a region containing no 
heat source and also applies to the diffusion of 
chemicals that have a concentration. The constant 
K is called diffusion. The equation [Oruh (2012)] 
is clearly second order in the three spatial variables 
but first in time.

The wave equation
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Problems in mechanical vibrations often lead 
to the wave equation. The solution U(x,t) of 
the equation represents the displacement from 
equilibrium, U(x,t) of a vibrating string, gas, or 
liquid. The equation [Stevenson (1968)] also 
occurs in electromagnetism where U can be a 
component of the electric or magnetic field in an 
electromagnetic wave or current-voltage along a 
transmission line. The quantity C is the speed of 
propagation of the waves.

Partial differential equation

An equation [Moon and Spencer (1953)] involving 
partial derivatives of one or more functions of two 
or more independent variables is called PDE. The 
order of the highest derivatives is called the order 

of the PDE’s, for example, the wave equation 
which is given as;
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In general, a PDE of second order in two 
independent variables X and Y is of the form 
F (x, y, U, Ux, Uy, Uxx, Uy,y), where U is the 
dependent variable in X and Y, Ux, and Uy are 
the first partial derivatives of U(x,y), respectively, 
Ux,x, Uxy, and Uy,y are the second partial derivatives.

Linear and non-linear PDE’s

A PDE [Smith (1995)] is said to be linear if it is 
of the first degree in the dependent variable (the 
unknown function). However, it is said to be non-
linear if it is not linear. Some essential linear PDE 
s are;
The wave equation,

 Utt = C2Uxx (7)

The Laplace equation

 U Uxx yy+ = 0  (8)

The Poisson’s

 Uxx + Uyy = f(x,y) (9)

Homogenous and Inhomogeneous PDE’s

A linear PDE [Smith (1995)] is said to be 
homogenous if each term of it contains either 
the dependent variable or one of its derivatives. 
Example of a homogenous linear PDE is the 
Laplace’s equation that is Equation 7. A PDE is 
said to be inhomogeneous if there exists a term in 
it which does not contain the dependent variable or 
one of its derivatives. An example is the poison’s 
Equation 8.

Solution of a PDE

A solution of a PDE in some region R of the space 
of the independent variables is a function that has 
all the partial derivatives appearing in the equation 
in some domain containing R and satisfies the 
equation everywhere in R. In general, the totality 
of solutions of a PDE is very large.
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For example, [Peter and Turner (1989)] the 
functions

U(x,y) = x2 – y2, U(x,y) =  ex sin y and U(x,y)= ln (x2 + y2)

which are entirely different are solutions of the 
Laplace’s Equation 1. The unique solution of the 
PDE is obtained by additional conditions arising 
from the problem. For instance, the condition 
that the solution U(x,y) assume given values of 
the boundary of a region considered (boundary 
condition) or when time t is one of the variables 
that U or Ut or both prescribed at t = 0 (initial 
condition).

Elliptic PDE

The general form of the two-dimensional second-
order linear PDE s is given by; [Kalambi (2008)]
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Where A, B, C, D, E, F, and G are functions of the 
independent variables X and Y, U is the dependent 
variable, Ux and Uy are the first partial derivatives 
of U(x,y), UxxUxy and Uyy are the second partial 
derivatives of U(x,y).

Block tri-diagonal matrix

A matrix is called a tri-diagonal matrix if it has 
all its non-zero entries on the main diagonal and 
zero on the sloping parallels immediately above or 
below the main diagonal [Sheid (1988)]
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When a diagonal matrix can be represented in the 
form in which the diagonal entries and the sloping 
parallels are matrices instead of single numbers, 
the matrices are then called block tri-diagonal 
matrix. The matrix T above is an example of block 
tri-diagonal matrix because it can be written as 
[Erwin (1997)]
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are all matrices, not single numbers.

METHODS OF SOLUTION

Iterative methods of solving linear system of 
equation

In this section, we shall study the algorithm 
and flowcharts of the various iterative methods 
for solving system of linear equations, namely 
Jacobi iteration, extrapolated Liebmann (SOR), 
and unextrapolated Liebmann (Gauss-Seidel) 
methods. There are other iterative methods which 
are not discussed here, such as conjugate gradient 
method (C.G) Generalized Minimal Residual 
(GMRES) and Chebyshev Iteration.

Jacobi iteration
The Jacobi method of solving a linear system 
of equations of the form AX = b where A is the 
coefficient matrix, X the column vectors of the 
unknowns and b the R.H.S constants. To solve a 
system of N linear equations, rearrange the rows 
so that the diagonal elements have magnitude 
as large as possible relative to the magnitudes 
of other coefficients in the same row. Define the 
rearranged system as AX = b then, beginning with 
an initial approximation to the solution vector X(1), 
compute each component of X(n + 1) for i = 1,2,…,n 
by Weisstein et al. (1993)
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A sufficient condition for convergence [Chapra 
and Carnale (1998) is that
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This process can be repeated until the condition 
max[X(n+1) – X(n)] ≤ ε is satisfied, where ε is the 
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possible tolerance. Jacobi method will converge 
if the matrix is diagonally dominant. The 
Jacobi method is also known as the method of 
simultaneous displacements because each of the 
equations is simultaneously changed using the 
most recent set of X values.

Gauss-Seidel method
To solve AX = b, given an initial approximation 
X0 where A, X, b retain their meaning in algorithm 
3.1, respectively, then beginning with an initial 
approximation to the solution vector X(1), we 
compute each component of X(n+1) for n = 1,2,…, 
N by
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A sufficient condition for convergence [Timber 
(1989)] is that
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This process can be repeated until the condition 
max [X(n+1) – X(n)] ≤ ε is satisfied, where ε is 
some possible tolerance. Convergence is only 
guaranteed in case of Gauss-Seidel method if 
matrix A is diagonally dominant.
Matrix is said to be diagonally dominant if the 
absolute value of the diagonal element in each 
row is greater than or equal to the summation 
of absolute values of rest of elements of that 
particular row. The iterative process is terminated 
when a convergence criterion is fulfilled; the 
Gauss-Seidel method is also known as the method 
of successive displacement that uses the latest 
iteration values.

Successive over-relaxation method
In numerical linear algebra, the method of 
the (SOR) modifies the correction term of the 
Gauss-Seidel method as follows for i = 1,2,…, n
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The sufficient condition for convergence [Strauss 
(1992)] is also;
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This process can be repeated until the condition 
max [X(n+1) – X(n)] ≤ ε is satisfied, where ε is some 
possible tolerance. When this is true, X(n) will 
converge to the desired solution no matter the 
initial vector used. This method is a generalization 
of the Gauss-Seidel method for application in 
problems of structural engineering.
When W = 1 we have the Gauss-Seidel method, w 
> 1 it is called successive over relaxation, while 
for w < 1 it is called successive under-relaxation. 
The parameter W is called the relaxation parameter 
and its purpose is to modify the spectral residues 
for faster convergence.

Finite difference method

In this subsection, we shall discuss in detail the finite 
difference method and show how to obtain finite 
difference approximation of a typical elliptic PDE. 
This is to lay a foundation for its application to elliptic 
PDE later in this work. A pictorial representation of 
the mesh points involved in Equation 26.

Finite difference
Let fi = fi,(i=1…n) be a sequence of values of a 
function F. The difference of the fi values is called 
finite differences and is denoted as follows; the 
first finite difference,

∆ fi = fi + 1 - fi

and second finite difference

 ∆ 2f_i = ∆ n - 1fi + 1 - ∆nfi (10)

And Equation 10 is called the nth finite difference 
of F. The symbol ∆ is the forward difference 
operator and it is defined by ∆fi = fi+1 – fi and also 
the difference listed above may be referred to 
as forward difference. Other finite difference is 
backward finite difference operator ∇ defined by

∇ = − +f f fi i i 1

and the central difference operator δ defined by

∆ fi = fi+ – fi–

The three finite difference operators ∆, ∇, and δ, 
that is, forward, backward, and central, 
respectively, are related through the equation 
∆f f fi

n
i n

n

i
n= ∇ =+ +

δ
2

 (P.Turner, 1989).
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Taylor’s theorem

In this section, we shall consider [Weisstein 
(1993)] the Taylor’s series expansion of a function 
U(x,y) and we shall establish the formula statement 
of the theorem. Suppose f (x) ∈ Cn [a,b] set of 
continuous functions in the closed intervals [a,b] 
and fn+1(x) exists in [a,b]. Let x0 ∈ [a,b] for every 
x ∈ [a,b] ∈ between X0 and X0 with f (x) = Pn(x) + 
Rn(x), where
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Pn is called the n th degree Taylor polynomial for 
about x0 and Rn(x) is called the truncation error 
associated with Pn(x). The infinite series obtained 
by taking the limit Pn(x) as n → ɛfty is called 
Taylor series for F(x) about X0 (Burden, Farres, 
Reynolds, 1988). In analogy with the function 
f(x) of the variable X, the Taylor series expansion 
with respect to X for a function U (x,y) of two 
independent variable is
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Where h the size of the mesh point and (xi,xj) is the 
coordinate of mesh point. If we replace h by –h in 
the above Equation 11 we obtain
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Similarly, the Taylor series expansion with respect 
to y of U (x,y) in the neighborhood of xi,xj is
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Replacing m in Equation 13, we have,
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We assume that the partial derivatives exist and 
each series is convergent, in each of the Equation 
from 11 to 14

Finite difference approximation of partial 
derivatives
First-order derivatives
Forward difference approximation
By considering equation (11) above, for small h, 
we may neglect terms of order h2 in the equation, 
then we obtain

U x y U x y hU x yi h j i j x i j+( ) = ( )+ ( ), , ,

Then, we get an approximation for Ux(xi,yj)

U x y U x y hU x yi h j i j x i j+( ) − ( ) = ( ), , ,

Then,
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hx i j

i h j i j
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Equation 15 gives the finite forward difference 
approximation of the Ux at the point (xi,yj). Similarly, 
the forward finite difference approximation of Uy at 
the point (xi,yj) is obtained by considering Equation 
13 and neglecting terms of order h2 to have

U x y U x y mU x yi j m i j y i j, , ,+( ) = ( )+ ( )
We also get the approximation for U x yy i j, ,( )  as

 U x y
U x y U x y

my i j

i j m i j
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, ,( ) ≈ ( )− ( )+  (16)
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Backward difference approximation
If we also consider Equation 12 up to first order in 
h and neglecting terms of order h2, we obtain
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The equation is the backward finite difference 
approximation to Ux at the point (xi,yj). In the same 
way, the backward difference approximation to 
at the Uy point (xi,yj) is obtained by considering 
Equation 14 and neglecting terms of order h2, we 
obtain
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The error in the forward and backward difference 
approximation for Ux and Uy are of the order h and 
m, respectively.
Central difference approximation
For the central difference approximation, if we 
[Turner (1989)] neglect the terms of order h3 in 
Equation 11 and 12, then if we subtract equation 
from12 to 11 we obtain
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Equation 19 gives the central difference 
approximation to the Ux at xi, yj. Similarly, using 
Equation 13 and 14, the central finite approximation 
to Uy at the point (xi,yj) is obtained as

 U x y
U x y U x y

my i j

i j m i j m
,
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In obtaining Equation 20, forms of orderm3 are 
neglected. The errors in the central difference 
approximation to Ux and Uy are orders h2 and m,2 
respectively.

Second-order derivatives

The finite difference approximation to Uxx [Smith 
(1995)] is obtained by considering Equation 12 and 13, 
if we neglect the form of order h3 in each of the 
equation and sums them up; we obtain the finite 
difference approximation to Uxx to be

 U x y

U x y

U x y U x y

hxx i j
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The error term in this approximation for Uxx is 
of order h2. Furthermore, the finite difference to 
Uyy is similarly obtained by adding Equation 13 
and 14 after neglecting terms of order m3, we then 
obtain the finite difference approximation of Uyy at 
U (xi,yj) as

 U x y

U x y

U x y U x y

myy i j

i h j m

i j i j m
,

,
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( )−

( )+ ( )
− −
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and its error is of order m2.
Finite difference approximation of typical 
elliptic PDE
To illustrate how to apply the finite difference 
method to a typical elliptic PDE, we have 
considered a boundary value problem consisting of 
the elliptic equation; Uxx + Uyy = f (xi,yj) defined in 
a domain D = (xi,yj) for a ≤ x ≤ bc ≤ y ≤ d subject to 
boundary condition at the boundary of D{U(xi,yj)} 
= g (xi,yj) is continuous in the domain D, then the 
boundary value problem has a unique solution in 
D. To obtain the finite difference approximation to 
the above BVP, we subdivide the domain D into a 
rectangular mesh point (xi,yj) where xi = a + ih, 
(i = 0,1…n) and yj = c + jm, (j = 0,1…q) with 

h
b a

n
= −  and m

d c

q
= − . Then, at each interior 
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point of the rectangular mesh point, we replace the 
partial derivatives Uxx and Uyy present in the given 
elliptic equation by their appropriate finite 
difference approximation, that is, Equation 21 and 
22, respectively, and we obtain [Strauss (1992)]

U x y U x y U x y
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For (i = 1,2,…n, j = 1,2,…q), if we write U (xi,yj) = 
Zi,j, Xi+h = Xi+1, Xi–h =Xi–i and Yj + h = Yj + 1, Yj – h 
= Yj – 1. Then, we have
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If we multiple both sides of the Equation 23 by h2 
we obtain
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Suppose that h

m

2

2
2=α , then after collecting like 

terms we obtain
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Equation 26 is the finite difference approximation 
of the Poisson equation x Uxx + Uyy = f(x,y) in the 
domain D. A pictorial representation of the mesh 
points involved in Equation 26 and the coefficient 
of the unknown solution in the corresponding 
terms are shown in the Figures 1-7.
The discrete boundary condition is
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Equation 26 together with the boundary conditions 
constitutes the finite difference subject to the 
above boundary value problem. For i = 1,2…n and 
j = 1, then Equation 26 gives rise to the following 
system of equation.
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APPLICATIONS

In this section, we shall apply the finite difference 
method to three boundary value problems 
involving elliptic PDE. The algebraic systems 
of equation resulting from the application of the 
finite difference method will be solved using 
the considered three iterative methods; they are 
Jacobi method, Gauss-Seidel method, and SOR 
method so as to assess their speed of convergence, 
since our interest is to solve elliptic PDE and 
also to study the methods of solving systems of 
linear equation. To facilitate the calculation, we 
have written a computer program using MATLAB 
program

Problem 1: (Poisson equation with linear 
inhomogeneous term)

Use the finite difference approximation to obtain a 
solution of the boundary value problem

U U x y

U x x U x x x

U

xx yy+ = < < < <( )
( ) = ( ) = −( ) ≤ ≤

, ,

, , ,

,

,

4 0 1 0 2

0 2 2 0 1

0

2 2

yy y U y y y( ) = ( ) = −( ) ≤ ≤, ,,2 21 1 0 2

i) Solve the algebraic system of equation with 
the three iterative methods mentioned in 
section (2.5) and compare their result with the 
exact solution U(x,y) = (x − y)2 in each case. 
Use h = 0.25 and k = 0.5.

ii) Use h = 0.2 and k = 0.2 and solve the 
resulting algebraic system of equation 
with the best iterative method and compare 
the result with the same exact solution 
U(x,y) = (x − y)2.
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Solution

Case 1: From the problem α = = =h

k

.

.
.

0 25

0 5
0 5 , a 

= c = 0, b = 1, d = 2.
The mesh points are (xi,yj) where xi = 0.25i and yj 
= 0.5j,i, j = 1,2,3.
From Equation 26 we have
Zi–1,j + Zi–1,j – 2.5Zi,j + 0.25Zi,j + 0.25Zi,j+1 = 0.25 (27)
Since α = 0.5, Equation 27 holds for each interior 
mesh point. The discrete boundary conditions 
associated with Equation 27 are
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Using Equation 2.1 and applying the boundary 
conditions, we will have the following systems of 
equation
The above system can be represented in a matrix 
form as AZ = B where

A =

−
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−
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The numerical solutions are obtained using the 
program in Appendix 3, 6, and 9
The result for Jacobi, Gauss-Seidel, and SOR 
iteration is presented in Tables 1-3 below and the 
exact solution of problem 1 is a function of U (x,y) 
= (x – y)2 and the values of X are as follows:
(0.0625, 0.007, 0.0625, 0.05625, 0.25, 0.0625, 
1.5625, 1.00, 0.5625)

Case 2

Solution:

Here,α = = = = = = =h

k
a c b d

0 2

0 2
1 0 1 2

.

.
, , , , (Xi,Yj) 

are the mesh points with

X I

Y j
i i

i j

= =
= = …

0 2 1 2 3 4

0 2 1 2 3 9

. , , , ,

. , , , ,,

From Equation 30 we obtain

Z Z W Z Zi j i j i j i j i j− − − ++ − + + =1 1 1 14
4

25, , , , ,  (28)

For i = 1,2,…,4 and j = 1,…,9
The discrete boundary conditions are

Z i Z i

Z

i i i
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, ,

,
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( . ) ,
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2

0
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0 2
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2
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Using the boundary conditions in Equation 28 
and writing out the equation for each interior 
point, a system of 36 algebraic equations with 
36 unknown is obtained.[1-4] Using the program 
in Appendix 3, the numerical solution to the 
second case of problem one is obtained. In 
Tables 5 and 6, we have restricted the use of 
SOR method, due to its less computational 
time to converge as compared to the other two 
iterative methods and it takes care of the data 
input problem in solving linear systems. The 
result is presented below;

PROBLEM: LAPLACE EQUATIONS

Use the finite difference approximation to obtain 
a numerical solution of the boundary value 
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Table 1: Jacobi Iteration
X1 X2 X3 X4 X5 X6 X7 X8 X9

1 0.0063 −0.0750 0.0563 0.3000 −0.1000 −0.1000 1.1063 0.1250 0.1563

2 0.0063 −0.0600 0.0163 0.3712 −0.0150 −0.1188 1.1863 0.6200 0.1963

3 0.0194 −0.0675 0.0204 0.4133 0.0570 −0.0848 1.3914 0.6765 0.3924
4 0.0206 −0.0534 0.0208 0.4639 0.0923 -0.0359 1.4182 0.8442 0.4184
5 0.0313 −0.0492 0.0313 0.4808 0.1503 −0.0192 1.4903 0.8689 0.4903
6 0.0346 −0.0349 0.0346 0.5123 0.1666 0.0123 1.5019 0.9323 0.5019
7 0.0435 −0.0306 0.0435 0.5203 0.1995 0.0203 1.5304 0.9432 0.5304
8 0.0460 −0.0202 0.0460 0.5372 0.2075 0.0372 1.5355 0.9693 0.5355
9 0.0519 −0.0174 0.0519 0.5412 0.2247 0.0412 1.5477 0.9742 0.5477
10 0.0534 −0.0110 0.0534 0.5498 0.2286 0.0498 1.5500 0.9856 0.5500
11 0.0568 −0.0094 0.0568 0.5518 0.2373 0.0518 1.5555 0.9879 0.5555
12 0.0577 −0.0058 0.0577 0.5562 0.2393 0.0562 1.5566 0.9931 0.5566
13 0.0595 −0.0049 0.0595 0.5571 0.2437 0.0571 1.5591 0.9942 0.5591
14 0.0600 −0.0030 0.0600 0.5593 0.2446 0.0593 1.5596 0.9967 0.5596
15 0.0610 −0.0025 0.0610 0.5598 0.2468 0.0598 1.5608 0.9972 0.5608
16 0.0612 −0.0015 0.0612 0.5609 0.2473 0.0609 1.5611 0.9984 0.5611
17 0.0617 −0.0013 0.0617 0.5612 0.2484 0.0612 1.5617 0.9986 0.5617
18 0.0618 −0.0008 0.0618 0.5617 0.2487 0.0617 1.5618 0.9992 0.5618
19 0.0621 −0.0007 0.0621 0.5618 0.2492 0.0618 1.5621 0.9993 0.5621
20 0.0622 −0.0004 0.0622 0.5621 0.2493 0.0621 1.5622 0.9996 0.5622
21 0.0623 −0.0003 0.0623 0.5622 0.2496 0.0622 1.5623 0.9997 0.5623
22 0.0623 −0.0002 0.0623 0.5623 0.2497 0.0623 1.5623 0.9998 0.5623
23 0.0624 −0.0002 0.0624 0.5623 0.2498 0.0623 1.5624 0.9998 0.5624
24 0.0624 −0.0001 0.0624 0.5624 0.2498 0.0624 1.5624 0.9999 0.5624
25 0.0625 −0.0001 0.0625 0.5624 0.2499 0.0624 1.5625 0.9999 0.5625
26 0.0625 −0.0000 0.0625 0.5625 0.2499 0.0625 1.5625 1.0000 0.5625
27 0.0625 −0.0000 0.0625 0.5625 0.2500 0.0625 1.5625 1.0000 0.5625
28 0.0625 −0.0000 0.0625 0.5625 0.2500 0.0625 1.5625 1.0000 0.5625
29 0.0625 −0.0000 0.0625 0.5625 0.2500 0.0625 1.5625 1.0000 0.5625
30 0.0625 −0.0000 0.0625 0.5625 0.2500 0.0625 1.5625 1.0000 0.5625
The method converged after 28th iteration

Table 2: Gauss-Seidel iteration
X1 X2 X3 X4 X5 X6 X7 X8 X9

1 0.00625 −0.07250 0.02725 0.02725 0.30063 0.01300 −0.09207 1.13631 0.37937

2 0.00731 −0.05987 0.02309 0.41956 0.08309 0.02652 1.38054 0.83727 0.48851

3 0.02426 0.04775 0.03450 0.47372 0.15783 1.48853 1.38054 0.93160 0.53043

4 0.03452 −0.03161 0.04515 0.51544 0.20235 0.03850 1.38054 0.96958 0.54793

5 0.04515 −0.01865 0.05264 0.53850 0.22589 0.05041 1.54793 0.98593 0.55567

6 0.05264 −0.01030 0.05717 0.55041 0.23789 0.05644 1.55567 0.99332 0.5922
7 0.05717 −0.00547 0.05971 0.55644 0.24394 0.05947 1.55922 0.99677 0.56091
8 0.05971 −0.00547 0.05971 0.55644 0.24394 0.05947 1.55922 0.99677 0.56091
9 0.05971 −0.00284 0.06106 0.55947 0.24697 0.06098 1.56091 0.99842 0.56172
10 0.06177 −0.00074 0.06213 0.56174 0.24924 0.06212 1.56211 0.99961 0.56231
11 0.06213 −0.00037 0.06231 0.56212 0.24962 0.06231 1.56231 0.99981 0.56240

12 0.06231 −0.00019 0.06241 0.56231 0.24981 0.06241 1.56240 0.99990 0.56245
13 0.06241 −0.00009 0.06245 0.56241 0.24991 0.06245 1.56245 0.99995 0.56248
14 0.06245 −0.00005 0.06248 0.56245 0.24995 0.06248 1.56248 0.99998 0.56249
15 0.06248 −0.00002 0.06249 0.56248 0.24998 0.06249 1.56249 0.99999 0.56249

16 0.06249 −0.00001 0.06249 0.56249 0.24999 0.06249 1.56249 0.99999 0.56250

17 0.06249 −0.00001 0.06250 0.56249 0.24999 0.06250 1.56250 1.00000 0.56250

18 0.06250 −0.00000 0.06250 0.56250 0.25000 0.06250 1.56250 1.00000 0.56250

19 0.06250 −0.00000 0.06250 0.56250 0.25000 0.06250 1.56250 1.00000 0.56250

20 0.06250 −0.00000 0.06250 0.56250 0.25000 0.06250 1.56250 1.00000 0.5625
We see that the method converges after 18 iteration
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Table 3: SOR iteration
1 0.0070 −0.0809 0.0268 0.3368 0.0298 −0.0956 1.2767 0.7153 0.4847

2 0.0077 −0.0555 0.0242 0.4528 0.1183 0.0095 1.4570 0.9373 0.5378

3 0.0319 −0.0389 0.0437 0.5014 0.2033 0.0431 1.5402 0.9813 0.5549

4 0.0419 −0.0182 0.0544 0.5441 0.2345 0.0561 1.5547 0.9936 0.5598

5 0.0548 −0.0066 0.0598 0.5560 0.2447 0.0603 1.5599 0.9978 0.5616

6 0.0597 −0.0023 0.0616 0.5603 0.2481 0.0617 1.5616 0.9992 0.5622

7 0.0616 −0.0008 0.0622 0.5617 0.2494 0.0622 1.5622 0.9997 0.5624

8 0.0622 −0.0003 0.0624 0.5622 0.2498 0.0624 1.5624 0.9999 0.5625

9 0.0624 −0.0001 0.0625 0.5624 0.2499 0.0625 1.5625 1.0000 0.5625

10 0.0625 −0.0000 0.0625 0.5625 0.2500 0.0625 1.5625 1.0000 0.5625

11 0.0625 −0.0000 0.0625 0.5625 0.2500 0.0625 1.5625 1.0000 0.5625

12 0.0625 −0.0000 0.0625 0.5625 0.2500 0.0625 1.5625 1.0000 0.5625
Observe that after 10 iterations the method converges

Figure 1: A pictorial representation of the mesh points

problem[5-7]

U U x y

U y U y

xx yy , ,

, , ,

+ = < < < <



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( ) = ( ) =
0 0

1

2
0

1

2

0 0 1
2 200yy

U x U x x, , ,0 0 1
2 200( ) = ( ) =

Compare the result with the exact solution 
U (x,y) = 400xy when
i. TOL=10−2

Figure 2: The coefficient of the unknown solutions

Figure 3: The mesh point of problem 1

Figure 4: The discrete boundary conditions of problem 1

ii. TOL=10−4

iii. TOL=10−6
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Solution

From the above problem; α = = =h

k
/ ,
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8
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8
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2
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From Equation 30, we have
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Since α = 1

Equation 29 holds for each interior mesh point 
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Equation 3.3 are
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Using Equation 4.3 and applying the boundary 
conditions, we will have the following systems of 
equations;

− + + =
− + + =
− + = −

4 0

4 0

4 2

1 1 2 1 1 2

1 1 2 1 2 2 3 1

2 1 3 1 3 2

Z Z Z

Z Z Z Z

Z Z Z

, , ,

, , , ,

, , , 55

4 0

4 0
1 1 1 2 2 2 1 3

2 1 1 2 2 2 3 2 2 3

3 1 2

Z Z Z Z

Z Z Z Z Z

Z Z

, , , ,

, , , , ,

,

− + + =
+ − + + =
+ ,, , ,

, , ,

, , , ,

2 3 2 3 3

1 2 1 3 2 3

2 2 1 3 2 3 3 3

4 50

4 25

4

− + = −
− + = −
+ − + =

Z Z

Z Z Z

Z Z Z Z −−
+ − = −

50

4 1503 2 2 3 3 3Z Z Z, , ,

The above 9×9 system can be represented in a 
matrix form as AZ = B where
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The numerical solutions are obtained by running 
the program in Appendix 3
The result is presented in Table 7.
TOL=10−2

i, j Xi Yi U(x, y) Z(x, y) Error
1,1 0.1250 0.1250 6.250000 6.247723 2.766×10−3

2,1 0.2500 0.1250 12.500000 12.494469 5.531×10−3

3,1 0.3750 0.1250 18.750000 18.744469 5.531×10−3

1,2 0.1250 0.2500 12.500000 12.497234 2.766×10−3

2,2 0.2500 0.2500 25.000000 24.994469 5.531×10−3

3,2 0.3700 0.2500 37.500000 37.494469 5.531×10−3

1,3 0.1250 0.3750 18.750000 18.748617 1.383×10−3

2,3 0.2500 0.3750 37.500000 37.497234 2.766×10−3

3,3 0.3750 0.3750 56.250000 56.247234 2.766×10−3

The tolerance truncated the iteration at the 10th iteration.

TOL = 10−4

i, j Xi Yi U(x, y) Z(x, y) Error
1,1 0.1250 0.1250 6.250000 6.249941 5.9×10−5

2,1 0.2500 0.1250 12.500000 12.499951 4.9×10−5

3,1 0.3750 0.1250 18.750000 18.749979 2.1×10−5

1,2 0.1250 0.2500 12.500000 12.499951 4.9×10−5

2,2 0.2500 0.2500 25.000000 24.999959 4.1×10−5

Figure 5: The mesh point of problem 2
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3,2 0.3700 0.2500 37.500000 37.499983 1.7×10−5

1,3 0.1250 0.3750 18.750000 18.749979 2.1×10−5

2,3 0.2500 0.3750 37.500000 37.499983 1.7×10−5

3,3 0.3750 0.3750 56.250000 56.249993 7.0×10−5

The tolerance truncated the iteration at the 14th iteration.

TOL = 10−6

i, j Xi Yi U(x, y) Z(x, y) Error
1,1 0.1250 0.1250 6.250000 6.250000 0.00000

2,1 0.2500 0.1250 12.500000 12.500000 0.00000

3,1 0.3750 0.1250 18.750000 18.500000 0.00000

1,2 0.1250 0.2500 12.500000 12.500000 0.00000

2,2 0.2500 0.2500 25.000000 25.000000 0.00000

3,2 0.3700 0.2500 37.500000 37.000000 0.00000

1,3 0.1250 0.3750 18.750000 18.750000 0.00000

2,3 0.2500 0.3750 37.500000 37.500000 0.00000

3,3 0.3750 0.3750 56.200000 56.200000 0.00000
The tolerance stopped the iteration at the 19th iteration.

Problem: Poisson Equation with Nonlinear 
Inhomogeneous Term

Use the finite difference approximation to obtain a 
numerical solution to the boundary value problem

U U xe x yxx yy
y+ = < < < <, , ,0 2 0 1

with the boundary conditions
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Compare the result with the exact solution at
i. 40th iteration
ii. 80th iteration

Use h = 1

3
 and k = 1
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Solution

From the above problemα = =h
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For a = 0, b = 2, c = 0, d =1. The mesh points are 

xi,y where, x
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From the Equation 30, we have
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Equation 32 holds to each interior mesh point 
(xi,yj), i = 1,2,…5, j = 1,2,…4
The discrete boundary conditions associated with 
Equation 33 are
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Applying the boundary conditions and re-
arranging the equations, we have
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Using the program in Appendix 6
The approximation solution was obtained in 
each case. These are as shown in Tables 8 and 9, 
respectively.[8]

DISCUSSION OF RESULTS

Effect of iterative methods

We have examined three iterative methods of solving 

Table 4: Solution of problem 1 case 1 for SOR iteration
i, j Xi Yi U(x, y) Z(x, y) Error
1,1 0.2500 0.5000 0.0625 0.0622 3×10−4

1,2 0.5000 1.5000 0.0000 0.0003 −3×10−4

1,3 0.7500 1.5000 0.0625 0.0624 1×10−4

2,1 0.2500 1.0000 0.5625 0.5622 4×10−4

2,2 0.5000 1.0000 0.2500 0.2498 2×10−4

2,3 0.7500 1.0000 0.0625 0.0624 1×10−4

3,1 0.2500 0.5000 1.5625 1.5624 1×10−4

3,2 0.5000 1.5000 1.0000 0.9999 1×10−4

3,3 0.7500 1.5000 0.5625 0.5625 0.0000
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linear systems of equation, after a thorough and 
comprehensive study on this research work, it was 
observed that , Equation 30, from the result in Table 2 
that Jacobi method takes longer time to converge 
Equation 32, even at the 25th iteration it was still 
struggling to converge and become stable for the 9×9 
linear system obtained by the application of finite 
difference method to the elliptic PDE. Gauss-Seidel 
converged at 18th iteration in Table 3 while SOR 
has 10th iteration in Table 4. Thus, it is advisable to 
use the SOR method for solving a system of linear 
equations because it requires less computation time 
to converge as compared to the other two iterative 
methods used Equation 33.[9]

Effect of mesh size

From the result in Tables 5 and 6, more accuracy 
was attained by increasing the number of mesh 
points from 9 to 36 which resulted by reducing 
the mesh size. For the nine mesh points, the 
approximations were accurate up to one decimal 
place when compared with the actual solution. 

Table 5: Solution of problem one case 2 for SOR 
iteration
i, j Xi Yi U(x, y) Z(x, y) Error
1,1 0.2000 0.2000 0.000000 0.004158 −4.2×10−3

2,1 0.4000 0.2000 0.040000 0.045367 −5.4×10−3

3,1 0.6000 0.2000 0.160000 0.172616 −0.012616

4,1 0.8000 0.2000 0.360000 0.373180 −0.013180

1,2 0.2000 0.4000 0.040000 0.043237 −3.2×10−3

2,2 0.4000 0.4000 0.000000 0.018022 −0.018022

3,2 0.6000 0.4000 0.040000 0.079887 −0.039887

4,2 0.8000 0.4000 0.160000 0.203799 −0.040438

1,3 0.2000 0.6000 0.160000 0.168698 −8.8×10−3

2,3 0.4000 0.6000 0.040000 0.080522 −0.040522

3,3 0.6000 0.6000 0.000000 0.098215 −0.098215

4,3 0.8000 0.6000 0.040000 0.191596 −0.151596

1,4 0.2000 0.8000 0.360000 0.372260 −0.012260

2,4 0.4000 0.8000 0.160000 0.220535 −0.060535

3,4 0.6000 0.8000 0.040000 0.217418 −0.177418

4,4 0.8000 0.8000 0.000000 0.469614 −0.469614

1,5 0.2000 1.0000 0.640000 0.645682 −5.7×10−3

2,5 0.4000 1.0000 0.360000 0.398618 −0.038618

3,5 0.6000 1.0000 0.160000 0.259080 −0.099080

4,5 0.8000 1.0000 0.040000 0.194428 −0.159443

1,6 0.2000 1.2000 1.000000 0.998192 1.8×10−3

2,6 0.4000 1.2000 0.640000 0.654943 −0.014943

3,6 0.6000 1.2000 0.360000 0.402175 −0.042175

4,6 0.8000 1.2000 0.160000 0.213012 −0.053012

1,7 0.2000 1.4000 1.440000 1.434826 5.2×10−3

2,7 0.4000 1.4000 1.000000 1.001978 −1.9×10−3

3,7 0.6000 1.4000 0.640000 0.654473 −0.014473

4,7 0.8000 1.4000 0.360000 0.378063 −0.018063

1,8 0.2000 1.6000 1.960000 1.955450 4.6×10−3

2,8 0.4000 1.6000 1.440000 1.438198  1.8×10−3

3,8 0.6000 1.6000 1.000000 1.003983 −3.9×10−3

4,8 0.8000 1.6000 0.640000 0.645985 −5.9×10−3

1,9 0.2000 1.8000 2.560000 2.557913 2.1×10−3

2,9 0.4000 1.8000 1.960000 1.958924 1.1×10−3

3,9 0.6000 1.8000 1.440000 1.441153 −1.2×10−3

4,9 0.8000 1.8000 1.000000 1.001964 −1.9×10−3

Table 6: Solution of problem three at 40th iteration
i, j Xi Yi Z(x, y) U(x, y) Error
1,1 0.3333 0.2000 0.40666 0.40713 4.7

2,1 0.6667 0.2000 0.81382 0.81427 4.5×10−4

3,1 1.0000 0.2000 1.22090 1.22140 3.0×10−4

4,1 1.3333 0.2000 1.62630 1.62850 2.0×10−4

5,1 1.6667 0.2000 2.03510 2.03570 6.0×10−4

1,2 0.3333 0.4000 0.49658 0.49727 6.9×10−4

2,2 0.6667 0.4000 0.99396 0.99455 5.9×10−4

3,2 1.0000 0.4000 1.49130 1.49180 5.0×10−4

4,2 1.3333 0.4000 1.98880 1.98910 3.0×10−4

5,2 1.6667 0.4000 2.48620 2.48640 2.0×10−4

1,3 0.3333 0.6000 0.60670 0.60737 6.7×10−4

2,3 0.6667 0.6000 1.21460 1.21470 1.0×10−4

3,3 1.0000 0.6000 1.82180 1.82210 3.0×10−4

4,3 1.3333 0.6000 2.42820 2.42950 1.3×10−4

5,3 1.6667 0.6000 3.03660 3.03691 3.1×10−4

1,4 0.3333 0.8000 0.74129 0.74185 5.6×10−4

2,4 0.6667 0.8000 1.48340 1.48370 3.0×10−4

3,4 1.0000 0.8000 2.22530 2.22550 2.0×10−4

4,4 1.3333 0.8000 2.96690 2.96740 5.0×10−4

5,4 1.6667 0.8000 3.7088 3.70920 4.0×10−4

Table 7: Solution of problem three at 80th iteration.
i, j Xi Yj Z(x, y) U(x, y) Error
1,1 0.3333 0.2000 0.40726 0.40713 −1.3×10−4

2,1 0.6667 0.2000 0.81452 0.81427 −2.5×10−4

3,1 1.0000 0.2000 1.22180 1.22140 −4.0×10−4

4,1 1.3333 0.2000 1.62900 1.62850 −5.0×10−4

5,1 1.6667 0.2000 2.03600 2.03570 −3.0×10−4

1,2 0.3333 0.4000 0.49748 0.49727 −2.1×10−4

2,2 0.6667 0.4000 0.99496 0.99455 −4.1×10−4

3,2 1.0000 0.4000 1.49240 1.49180 −6.0×10−4

4,2 1.3333 0.4000 1.98980 1.98910 −7.0×10−4

5,2 1.6667 0.4000 2.48700 2.48640 −6.0×10−4

1,3 0.3333 0.6000 0.60760 0.60737 −2.3×10−4

2,3 0.6667 0.6000 1.21520 1.21470 −5.0×10−4

3,3 1.0000 0.6000 1.82270 1.82211 −5.9×10−4

4,3 1.3333 0.6000 2.43020 2.42950 −7.0×10−4

5,3 1.6667 0.6000 3.03750 3.03690 −6.0×10−4

1,4 0.3333 0.8000 0.74210 0.74185 −2.5×10−4

2,4 0.6667 0.8000 1.48400 1.48370 −3.0×10−4

3,4 1.0000 0.8000 2.22600 2.22550 −5.0×10−4

4,4 1.3333 0.8000 2.96790 2.96740 −5.0×10−4

5,4 1.6667 0.8000 3.70970 3.70920 −5.0×10−4



Emmanuel and Chinelo: On the Numerical Fixed Point Iterative Methods of Solution

AJMS/Oct-Dec-2018/Vol 2/Issue 4 45

However, in Table 6, where there are 36 mesh 
points, the solutions were accurate up to two 
decimal places and some three decimal places by 
comparison with the actual solution. However, 
increasing the mesh size requires more iteration.

Effect of tolerance value

It was observed from the result in Table 7 that a 
better approximation is obtained by a reduction 
in the tolerance value. When the tolerance value 
as defined in Table 6 was reduced from 10−2 to 
10−4, more accurate approximation was obtained. 
At a tolerance value of 10−6 actual solutions were 
obtained. This is because the round off error 
accumulates more error when tolerance 10−2 and 
10−4 were used than when the tolerance 10−6 is used.

Effects of iteration values

From Tables 8 and 9, it could be deduced that more 
accurate approximations are obtained by increasing 
the number of iterations. At 40th iteration, the 
solutions were accurate up to two decimal places, 
but at 80th iteration, the solutions became accurate 
up to three decimal places. A general observation 
here shows that at some points, the solution values 
at 80th iterations are larger than the actual solutions 
while at 40th iteration they are smaller.

The summary of the result

1. Use of the SOR method converges faster
2. Many no of mesh points more accurate but 

high number of iterations
3. The lower value of tolerance better accuracy

CONCLUSION

In the course of this research work, we were trying 
to solve the PDE of elliptic type with the finite 
difference method. In this method, we make the 
area of integration of the elliptic equation to be 
overlaid by a system of rectangular meshes by two 
sets of equally spaced lines on sets of parallel to 
X – axis and the other parallel to Y.
An approximated solution to PDE is found at 
the point of intersection of the lines which are 
called mesh points. The solution is obtained 
by approximating the PDE over the area by 
n-algebraic equations involving the values of the 

solution at the n-mesh point interval of the region 
of integration. Then, for each of the n-interval mesh 
points, the algebraic equations approximating the 
PDE are written down.[10-12]

The system of algebraic equations obtained by 
applying the finite difference approximation 
to the PDE was solved with the three iterative 
methods in problem one case 1 while in problem 
one case 2, problem 2, and problem 3, the systems 
were solved with the use of SOR method due 
to its less computational time to converge. The 
better approximation was obtained using many 
mesh points, calculating each approximation for 
several times and by reducing the tolerance value. 
A computer program (MATLAB programming) 
was used in making the computation within 
some seconds provided that the program is well 
posed. The main advantage of numerical over 

Figure 6: T The discrete boundary conditions of problem 2

Figure 7: The mesh point of problem 3
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other methods such as analytical and graphical 
methods is that it allows us to solve such equation 
like elliptic PDE s with more ease to obtain 
the approximate solutions which are useful in 
scientific research.

REFERENCES

1. Tveito A, Winther R. Introduction to Partial Differential 
Equation, a Computational Approach. Vol. 29. Berlin: 
Springer; 1998.

2. Oruh BI. MTH 423 Lecturer Note on Numerical 
Analysis II. Nigeria: MOUAU; 2012.

3. Weisstein EW. Elliptic Partial Differential Equation. 
New York: John Wiley; 1993.

4. Kreyszig E. Advanced Engineering Mathematics. 7th ed. 
New York: John Wiley and Sons Inc.; 1997.

5. Stephenson G. Partial Differential Equation for 
Scientists and Engineers. 3rd ed. Hong Kong: Longman; 
1968.

6. Smith GD. Numerical Solution of Partial Differential 
Equations. Oxford: Oxford University Press; 1995.

7. Kalambi I. Comparison of three iterative methods for 
the solution of linear equations. J Appl Sci Environ 
2008;12:53-5.

8. Moon P, Spencer DE. Resent investigation of separation 
of Laplace’s equation. Proc Am Maths Soc 1953;302:4.

9. Turner PR. Guide to Numerical Analysis. Hong Kong: 
Macmillan Education Ltd.; 1989.

10. Scheid F. Numerical Analysis. Schaum’s Series. 
New York: McGraw Hill; 1988.

11. Chapra SC, Canale RP. Numerical Methods for 
Engineer. U.S.A: WCB/McGraw-Hill; 1998.

12. Strauss WA. Partial Differential Equation, an 
Introduction. New York: John Wiley and Sons; 1992.



Emmanuel and Chinelo: On the Numerical Fixed Point Iterative Methods of Solution

AJMS/Oct-Dec-2018/Vol 2/Issue 4 47

Appendix 1: JACOBI FLOWCHART

Appendix 2: JACOBI ITERATIVE METHOD: 
Algorithm2.1;
Step 1; Read n l (n is the number of iteration)
Step 2; Read bi, i = 0, 1, 2., (n−1) (RHS constant)
Step 3; For i = 0(1)(n−1), do till (8)
Step 4; X 1 ← 0

Step 5; For j = 0(1)(n−1), do till (7)
Step 6; Read aij
Step 7; Next j
Step 8; Next i
Step 9; m1
Step 10; For i = 0(1) (n−1), do till (6)
Step 11; C i ← b
Step 12; For j = 0(1) (n−1), do till (15)
Step 13; if i 6= j
Step 14; C i ← −a ij×j
Step 15; Else, next j
Step 16; Next i
Step 17; For i = 0(1) (n−1), do till (19)
Step18; X 1 ←C i/a ij
Step 19; Next i
Step 20;M ← m+1
Step 21; If M ≤ L
Step 22; Go to (10)
Step 23; Else,
Step 24; For i = 0(1) (n−1), do till (26)
Step 25; Write X 1
Step 26; Next i
Step 27; End
Appendix 3: MATLAB M-FILE FOR JACOBI 
ITERATIVE METHOD WITHOUT
TOLERANCE
function[x,J,c]= jacobi n o t ol(A,b,n,z)
%
% x = jacobi(A,b,n,z)
%
% Jacobi iteration on system A*x = b with printing
% n – number of iterations
% z – initial vector (default 0)
%
% x – final iterate
% J – Jacobi matrix
% c – Jacobi vector
%
ifnargin<=3, z=0*b; end
D = diag(diag(A));
J = D\(D−A);
c = D;
¯
x=z;
for k = 1:n
x = J*x + c;
fprintf(1,’%3d ’,k)
fprintf(1,’%5.6f ’,x’)
fprintf(1, ′ \ n’)
End

APPENDIX
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Appendix 4: MATLAB M-FILES FOR THE 
JACOBI ITERATIVE METHOD WITH
TOLERANCE MATLAB SCRIPT
functionxnew = jacobi(A,xold,b,maxits,tol)
M = diag(diag(A)); N = M-A;
for k = 1:maxits
xnew = M\(N*xold+b);
if norm(xnew-xold)<tol + eps(norm(xnew))
return
end;
xold = xnew; fprintf(1,’%3d ’,k)
fprintf(1,’%5.6f ’,xold’)
fprintf(1,’\ n’)
end;
Appendix 5: GAUSS-SEIDEL FLOWCHART

Appendix 6: GAUSS-SEIDEL ITERATIVE 
METHOD; Algorithm2.2
Step 1; Read n,l (l is the number of iteration)
Step 2; Read bi, i=0,1,2.,(n-1)(RHS constant)
Step 3; For i=0 (1)(n-1) do till (8)
Step 4; Xi← 0
Step 5; For j=0 (1)(n-1), do till (7)
Step 6; Read aij
Step 7; Next j
Step 8; Next i
Step 9; M← 1
Step 10; For i=0(1)(n-1), do till (16)
Step 11; C← bi
Step 12; For j=0(1)(n-1), do till (15)
Step 13; If i6= j c ← c−a ij×j
Step 14; Else, next j
Step 15; Xi← c/a ij
Step 16; Next i
Step 17; M← m+i
Step 18; If m≤ i
Step 19; Go to 10
Step 20; Else
Step 21; For i=0(1)(n-1) do till 24
Step 22; Write xi
Step 23; Next i
Step 24; End
Appendix 7: MATLAB M-FILEF OR GAUSS-
SEIDEL ITERATIVE METHOD WITHOUT 
TOLERANCE
function [x,G,c] = gsmp(A,b,n,z)
%
% x = gsmp(A,b,n,z)
%
%  Gauss-Seidel iteration on system A*x = b with 

printing
% using matrix multiplication (not optimal)
% n – number of iterations
% z – initial vector (default 0)
%
% x – final iterate
% G – Gauss-Seidel matrix
% c – Gauss-Seidel vector
%
ifnargin<=3, z=0*b; end
LD = tril(A);
G = -LD\triu(A,1);
c = LD;
¯
x=z;
for i = 1:n
x = G*x + c;
fprintf(1,’fprintf(1,’fprintf(1,’\n’)
end
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Appendix 8: GAUSS-SEIDEL ITERATIVE 
METHOD WITH TOLERANCE MAT-
LAB SCRIPT
function x = Gauss-Seidel(A,xold,b,maxits,tol)
D = diag(diag(A)); L = tril(A)- D;
U = A-D-L;
M = D + L; N = -U;
bp = b;
x = xold;
for k = 1:maxits
x = M\(N*x+bp);
if norm(x-xold)<tol + eps(norm(x))
return
end;
xold = x;
fprintf(1,’%3d ’,k)
fprintf(1,’%5.6f ’,xold’)
fprintf(1,’\n’)
end;
Appendix 9: SOR ITERATIVE METHOD; 
Algorithm 2.3
Step 1; Input: A, b, w
Step 2; Output: ∅
Step 3; Choose an initial guess ∅ to the solution
Step 4; Repeat until convergence
Step 5; for i from 1 until n do
σ ← 0
Step 6; for j from 1 until n do
Step 7; if j 6= i then
Step 8; σ ← σ + a i,j ∅j
Step 9; end if (j← loop)
Step 10; ∅ i ← (1-w) ∅ i +
w/a
ii
(bi- σ)
Step 11; end if (i←loop)
Step 12; Check convergence if reached
Step 13; end (report)
Appendix 10: MATLAB M-FILE FOR 
SUCCESSIVE OVER RELAXATION ITER-
ATIVE METHOD WITHOUT TOLERANCE
function x = sor1(A,b,n,w,z)
%

% x = sor(A,b,n,w,z)
%
% SOR iteration on system A*x = b with printing
% n – number of iterations
% w – SOR parameter
% z – initial vector (default 0)
%
% x – final iterate
%
ifnargin<=4, z=0*b; end
m,l= size(A);
D = diag(diag(A));
J = D\(D - A);
c = D\b;
x=z;
for k = 1:n
for i=1:m
x(i,1) = (1-w)*x(i,1) + w*(J(i,:) * x + c(i,1));
end
fprintf(1,’%3d ’,k)
fprintf(1,’%5.6f ’,x’)
fprintf(1,’\n’)
end
25
Appendix 11: SORITERATIVE METHOD 
WITH TOLERANCE MATLAB SCRIPT
function x = SOR(A,xold,b,w,maxits,tol)
D = diag(diag(A)); L = tril(A)- D;
U = A-D-L;
M = D + w*L; N = (1-w)*D-w*U;
bp = w*b;
x = xold;
for k = 1:maxits
x = M\(N*x+bp);
if norm(x-xold)<tol + eps(norm(x))
return
end;
xold = x;
fprintf(1,’%3d ’,k)
fprintf(1,’\n’)
end;


