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ABSTRACT
In this study, I worked on how to solve the biological and physical problems using systems of linear 
differential equations. A differential equation is an equation involving an unknown function and one or 
more of its derivatives. In this work, we consider systems of differential equations and their underlying 
theories illustrated with some solved examples. Finally, two applications, one to cell biology and the 
other to physical problems, were considered precisely.
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INTRODUCTION

If each of the coefficients in a system of m linear equations in n unknowns is a linear differential operator 
defined on an interval I and if each of the quantities on the right-hand side of the equation is a continuous 
function on I we then have what is known as a system of m linear differential equations in n unknowns. 
Such a system has[7] the form.

L x L x h t

L x L x h t

n n

m mn n m

11 1 1 1
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+…+ = ( )

+…+ = ( )
    (1.1)

Where, the Lij are linear differential operators defined on I and x1,…xn are unknown functions of t. 
As usual, we say that a system like this is homogeneous if all of the hi are identically zero and non-
homogeneous otherwise. Solutions of these systems are particularly important in application and as we 
shall see, arise in such diverse fields as biology, economics, and physics.
The formal similarity between (1.1) and an ordinary system of linear equations suggests that we[11] 
rewrite (1.1) in matrix form as.

LX = H (t) (1.2)

Where, L is the m x n operator matrix
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and X and H (t) are the column vectors
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Moreover, (1.2) is an alternative version of (1.1). Of course, this kind of manipulation does not mean 
much until we have introduced suitable vector spaces and an appropriate linear transformation between 
them. However, this is easily done. We[1] just let rm and rn be the spaces of column vectors of the form.
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Respectively, where, the hi (t) is continuous on I and the xi (t) sufficiently differentiable on I so that the 
Lij can be applied to them, and where addition and scalar multiplication are defined component wise as 
usual. This done, we let L: rn→rm be the linear transformation defined by (1.3); that is.
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Then, the original system can indeed be written in form as Lx = H(t). The virtue of this approach, besides 
an obvious economy in notation, is that it provides a conceptual setting for the study of systems of linear 
differential equations in which we can apply the known results for operator equations. However, as it 
stands (1.1) is too general to permit a systematic analysis leading to specific techniques of solution. 
Hence, in the sections which follow we should devote our efforts to the study of more specialized 
systems for which detailed information can be obtained.

Results from the general theory of first-order systems

We know that the first-order system is given as

x a t x a t x b tn n1 11 1 1 1= ( ) +…+ ( ) + ( )

  

( )



x a t x a t x b tn n nn n n= ( ) +…+ ( ) +1 1

 (1.2.1)

In which the aij (t) and bi (t) are continuous on an interval. In the matrix version (2.1)

X’=A(t)X+B(t) (1.2.2)
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As usual, initial-value problem for such a system requires that we find a solution X=X(t) of the system 
which satisfies an initial condition X (t0) = X0 where t0 is a point in I and
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is a point in Rn.
Systems of this type are especially important in the theory of linear differential equations because, 
among others, every normal nth-order linear differential equations can be transformedinto normal first-
order system. We now prove this assertion as a theorem.

Theorem (1.2.1)[10]

Every normal nth-order linear differential equation is equivalent to an n × n system of normal first-order 
linear differential equations.

Proof.
Starting with

xn + an–1 (t) x
(n–1) + … + a0 (t)x = h (t) (1.2.3)

Let x1…xn be new variables defined by
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Then, (2.3) can be rewritten as
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 (1.2.4)

xn = −a0 (t) x1−a1 (t) x2−…−an-1 (t) xn + h (t)

which is a system of the required kind. This theorem tells us that theory of the first-order linear systems 
includes the theory of nth-order linear equations as a special case. The converse, however, is not true 
because there exists first-order systems that cannot be converted into a single nth-order equation.
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As in the case of a single nth-order equation, the theory of the first-order linear system is based on an 
existence and uniqueness theorem.

Theorem (1.2.2)[8]

Every initial-value problem

X’ = A (t) x + B (t), X (t0) = X0,

Involving a normal n × n system of the first-order linear differential equations whose coefficients and 
right-hand sides are continuous on an interval I has a unique solution on I.
We now turn our attention to the homogeneous system

X’ = A (t)X, (1.2.5)

whose solution set is a subspace W of the vector space rn defined in the preceding section. When combined 
with our earlier results on the dimension of the solution space of a normal homogeneous nth-order linear 
differential equation, theorem 1.2.1 suggests that W too is n-dimensional. Indeed, it is the proof follows 
easily from the lemma.

Lemma 1.2.3 (Hurvitz [1998])
Let X1,…X < be solutions of X = A (t) X I, and t0 be any point in I. Then, X1, … ,Xk are linearly dependent 
rn if and only if the vectors X1 (t0) are linearly dependent in Rn.
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WHICH means that the vectors X1 (t0), … Xk (t0) are linearly dependent in Rn conversely suppose that

j
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Where again, the cj is constant and not all zero. Then, since the Xj (t) is a solution of
X’ = A(t)X, the vector

X t c X t
j

k

j j( ) = ( )
=
∑

1

Is a solution of the initial-value problem

X’ = A (t) X, X (t0) = 0.

However, by theorem (1.2.2), the only solution of this problem is the trivial solution X (t) = 0 for all t in 
I. Hence,

j

k

j jc X t
=
∑ ( ) =

1
0 0

And X1, … Xk are linearly dependent in rw
To continue, we now prove
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Theorem (1.2.4)[4]

If W is the solution space of the n × n system

X’ = A (t)X,

Then, dim W = n

Proof.
In the first place, the dimension of W cannot exceed n for if it did we could find n+1 linearly independent 
vectors X1 (t0), Xn+1 in W, then the vectors X1 (t0), Xn+1 (t0) are linearly independent in Rn which is impossible.
To complete the proof, let Ei denotes the standard basis vectors in Rn, and let Xi be the solution of the 
initial-value problem.
Then, since E1,…En are linearly independent in Rn Lemma (1.2.3) implies that X1,…Xn are linearly 
independent in W. Thus, the dimension of W must be at least N and we are done.
From here, theory of the first-order system of n equations inunknowns develops in much the same way 
as the theory of a single nth-order equation. In particular, given n solutions
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Of X’ = A (t) X on an interval I the vectors X1,…Xn are a basis for the solution space of the equation if 
and only if their Wronskian.
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Never vanishes on I The proof of this assertion depends on the fact that W [X1, … Xn] is identically zero 
on I if and only if it vanishes at a single point of I. The details are not included in this work,
When X’ = A (t) X is the first-order system derived from the normal nth-order equation.

x(n) + an–1 (t) x
(n–1) + … + a0 (t) x = 0 (1.2.7)

W [X1, … Xn] is no one other than the Wronskian of the n solution of (1.2.7), hence, the preceding result 
generalize known facts.
We conclude this section with a few remarks about solving non-homogenous first-order systems, which 
take the form

X’ = A (t) X + B (t) (1.2.8)

When expressed in matrix as we know, every solution of such a system can be written in the form Xp+ Xh 
where Xp is a particular solution of (1.2.8)
And Xk is a solution of the associated homogeneous system X’ = A (t) X, thus if X1, … Xn is a basis for 
the solution space of

X’ = A (t) X

The general solution of (1.2.8) is

X (t) = Xp (t) + c1 X1 (t) + … + cn Xn (t).
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The c1 being arbitrary constants. Moreover, just as in case of a single nth – order equation a particular 
solution Xp of (1.2.8) can be obtained from a basis X1,…Xn of the associated homogeneous system by the 
method of variation of parameters. The procedure goes like this. First, form the vector

X t c t X t
i

n

( ) = ( ) ( )
=
∑

1
1 1  (1.2.9)

and determine the c1 (t) so that X (t) is a solution of (1.2.8). Then, substitute (1.2.9) in (1.2.8) to obtain
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Since Xi (t)= A (t) Xi (t) for i=1,…n the three equations above reduces to
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Which in expanded form, reads
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First-order system with constant coefficients

The eigenvalue method is well suited to solving n × n systems of first-order linear differential equations 
with constant coefficients. Our discussion of these systems will divide into case that depends on the nature 
of the eigenvalues of the coefficient matrix (by which we mean the eigenvalues of the linear transformation 
defined by the matrix), just as the depend on the nature of the roots of their associated characteristic equation. 
In fact, as theorem (1.2.1) implies, the results we are about derive include our earlier work as a special case.
We begin by considering the real eigenvalue of the coefficient matrix and, as usual, giving most of our 
attention to the homogeneous case. Thus, let

X’ = A (1.3.1)

be an n × n first-order linear system with coefficient matrix
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Lemma 1.3.1
For each real eigenvalue λ of A and each eigenvector
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belonging to λ the function Xλ = Eλ e
λt is a solution of (1.3.2). Moreover, solutions formed in this way 

from distinct eigenvalues are linearly independent in C (−∞∞).

Proof:
First of all A Eλ= λ Eλ because Eλ is an eigenvector belonging to λ,
Thus,

A Xλ = λEλ e
λt = λXλ

On the other hand, X’λ = λEλ e
λt = λXλ and, X’λ = AXλ as required.

Now let λ1, … λk be distinct (real) eigenvalues of A with associated eigenvectors, E’λ1 = Eλk and suppose 
that

c1 Eλ1 e
λ1t + … + ck λEλk e

λkt = 0

Then, by setting t = 0 we have

c1 Eλ1 e
λ1t + … + ck λEλk e

λkt = 0

and the linear independence of the Eλi in Rn implies c1= … = ck=0, hence, the Eλk e
λ1t are linearly independent 

in C (−∞∞). 
This result, together with theorem (2.4) immediately yields.

Theorem (1.3.2)
If A has n distinct (real) eigenvalues, λ1,…λn and Eλ1 … Eλn are eigenvectors belonging to these eigenvalues, 
then the general solution of the normal first-order system X’ AX is

X (t) = c1 Eλ1 e
λ1t + … + cn λEλn e

λnt

Where, c1…cn are arbitrary constants.

Example 1
Solve the system

x’1 = x1 + 3x2 + sin t

x’2 = x1−x2 − cos t (1.3.2)

Solution
A particular solution of this system can be obtained from the general solution of (1.2.1) by the method 
of variation of parameters described at the end of section (1.2.2). In this case, however, it is easier to use 
undetermined coefficients.
We seek a solution of the form below to (1.3.1)

x’1 =A sin t+A cos t

x’2=C sin t+D cos t.

When we substitute these expressions in the given and collect like terms, we find that

(A + B + 3C + 1) sin t + (−A + B + 3D) cos t = 0

(A − C + D) sin t +(B − C − D−1) cos t = 0
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Since these equations must hold for all values of the coefficients A, B, C, and D must be chosen to make
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The augmented matrix of this system of linear equation is
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From this, we read the values of A, B, C, and D and conclude that
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Is a particular solution of (1.3.2). The general solution of (1.3.1) therefore becomes
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COMPLEX AND REPEATED EIGENVALUES

It remains for us to consider those cases in which the characteristic equation of the coefficient matrix for.

X’ = A X

Has complex or repeated roots (or both). We begin with the complex case.
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Complex eigenvalues

Since the entries of A are real by assumption, the characteristic equation of A is a polynomial equation 
with real coefficients, hence, if λ =  + βi β ≠ 0, is an eigenvalue for A. The complex conjugate λ’ = a − βi 
is also an eigenvalue of A. To find eigenvectors for these Eigenvalues, we extend the domain of the linear 
transformation A associated with A to include n–tipple of complex number as follows. Let Cn denotes the 
set of all column vectors.
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Where, the zi are complex numbers and let addition and scalar multiplication in Cn be defined component 
wise;
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Where, in the second equation, z is an arbitrary complex z as arbitrary complex number.*
It is easy to verify that these definition convert Cn into a vector space provided complex number are used 
in place of real numbers as the scalars of the real of the original definition. In fact, once this change has 
been made, all the results previously established for Rn also hold for Cn. In particular, if
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is an n × n matrix with real or complex entries, then the mapping
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is a linear transformation that maps Cn to itself. Again a number λ (this time complex) is called an 
Eigenvalue for A and Z ≠0 is called an eigenvector belonging to λ, if AZ = λZ.

Lemma 2.1[3]

Let A be an n × n matrix with real entries and suppose that λ = a+bi, b ≠ 0 is an eigenvalue for A then if 
Z is an eigenvector belonging to λ its complex conjugate Z is an eignvector belonging to the eigenvalue 
λ = a + βi,

Proof:
Since AZ = λZ
We must have

Az Z=

However, the entire of A are read so that A A=  and the preceding equation reads

Az Z=
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Recall that complex numbers are multiplied by the rule
(a + bi)(c + di) = (ac − bd) + i(ad+bc)
In short multiply as usual and the fact that i2 = −1.

Lemma:2.2[2]

Let A be a real n × n matrix, and suppose that Eλ is an eigenvector in Cn of the complex eigenvalue 
λ =  + βi pf A then. E e E et t





and

are solution of equation X’ = A X,

Proof:
The proof is the one we use before;
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A similar argument can be given for the vector E e t
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 *

Having come this far, we are now in a position to remove all references to complex numbers and complex-
valued functions by invoking Euler’s formula.[6]

e(a+βi) = ea (cos β + i sin β),

For then

E e E e i t

E e E e t i t

t at

t at

λ
λ

λ

λ
λ

λ

β β

β β

= +( )
= −

cos sin

(cos sin )

Moreover, since both of these functions are solutions of X’ = A X, so are their linear combinations.

1

2 2 2
E e E e e

E E
t

i E E
t

a

t t at
λ

λ
λ

λ λ λ λ λβ β+( ) = +
+

+( )











cos sin

nnd

i
E e E e

i E E
t

E E
tt

t
a

2 2 2λ
λ

λ
λ λ λ λβ β−( ) = −

−
+









(
cos sin .

Moreover, the coefficients that appear in this solution are real since

z z
a and

z z
b

+ = − =−
2 2

Wherever z = a + bi and z a bi= −  are complex conjugates, thus we have proved.

Theorem 2.3:
Let λ = a + βi be a complex eigenvalue for the n × n real matrix A and let Eλ be an eigenvector in Cn 
belonging to λ. Then, the functions

X1 (t) = eat (Gλ cos βt + Hλ sin βt)

X2 (t) = eat (Hλ cos βt − Gλ sin βt),
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Where,

E E
H

i E E 


 +
=

−( )

2 2
and

are linearly independent solutions of X’ = A X.
Strictly speaking we are allowing X| = AX having solution which is functions of a complex variable. As 
we remarked earlier, we can legitimately do so as soon as we have defined the notion of differentiability 
for such functions.

Example 2.1
Solve the first – order system

x’1 = −x2

x’2 = x1 (2.1)

Solution
In matrix form this system is

x

x

x

x

’

’
1

2

1

2

0 1

1 0









 =

−


















And as in example (2.1). It has λ = i as an eigenvalue.

E
i

i =







1

Is an eigenvector belonging to this system is

E E i E Ei i i+
=









−
=

−







,

( )

2

0

1 2

1

0

Thus, by theorem 2.4

X t t t
t

t1

0

1

1

0
( ) = 






 +

−







 =

−







cos sin

sin

cos

And

X t t
t

t2

1

0

0

1
( ) = −







 +








 =

−







cos

sin

cos

Are linearly independent solutions of (2.2). The general solution of the system therefore is

X t C X t C X t
c t c t

c t c t

sin cos

cos sin
( ) = ( ) + ( ) = −

−



1 1 2 2

1 2

1 2






Repeated eigenvalues. Except for language and notation, the result we have obtained so far for the first-
order system with constant coefficients are identical with those we obtained earlier for the corresponding 
case involving constant coefficient nth-order equations. However, if the characteristic equation for A has 
a repeated root, something new happens.
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Suppose for instance that λ0 is a real eigenvalue of multiplicity two for A, by which we mean the (λ−λ0)
2 

is a factor of the characteristic equation for A. Then as we saw earlier, the system X’ = A X has a non-
trivial solution of the form

X1 (t) =E λ0 e
λ0t

Where Eλ0 is an eigenvector belonging to λ0 our experience with nth-order equation would suggest that the 
system also has a nontrivial solution of the form.

X2 (t) = Bte e
λot + C eλot

 (2.3)

Where, B and C are vectors in Rn but C is not necessarily a scalar multiple of when this happens the term 
Ceλot, in (2.3) cannot be absorbed as part of X1 (t) more generally, we have the following result.

Theorem 2.4[5]

Let λ0 be a real; root of multiplicity m characteristic equation for the n × n matrix A. Then, the first-order 
system X’ = A X has m linearly independent solutions of the form.

X1 (t) = B11 e
λ0t

X2 (t) = B21 te
λ0t + B22 e

λ0t

Xm (t) = Bm1 e
m−1 eλot + Bm2 t

m−2 eλ0t + … + Bmm eλ0t

Where, the Bij
ts  are vectors in Rn

An analogous result holds for repeated complex eigenvalues

Example 2.2
Find the general solution of

x’1 = −2x1 − 3x2

x’2 = 3x1 + 4x2 (2.2)

Solution:
The characteristic equation for the coefficient matrix of this system is

− − −
−

= −( ) =
2 3

3 4
1 0

2




Thus, λ = 1 is an eigenvalue of multiplicity two
To find an eigenvector belonging to λ, we seek a non-trivial solution of

− −
















 =











2 3

3 4
1

2

1

2

e

e

e

e

Since this equation is satisfied if and only if e2 = −e1,

1

1−










Is an eigenvector for the system and

X t et
1

1

1
( ) =

−









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Is a solution. To continue, we seek a second solution of the form

X t
B

B
te

C

C
et t

2
1

2

1

2

( ) = 






 +











When this expression is substituted into (2.4) and like term is collected, we find that.

(3B1 + 3B2) te
t + (B1 + 3C1 + 3C2) e

t = 0

(3B1 + 3B2) te
1 + (−B2 + 3C1 + 3C2) e

t = 0.

These equations imply that

B t B and C B C2 1 2 1 1

1

3
( ) =− =− −

Where B1 and <C1 are arbitrary. For instance, if we set B1 = 3 and C1 = 0, then

X t te et t
2

3

3

0

1
( ) =

−








 +

−










Thus, the general solution of (2.4) can be written as

X t c e c te et t t( ) =
−








 +

−








 +

−














1 2

1

1

3

3

0

1

APPLICATIONS

Here, we present two applications of linear differential equations to biological and physical problems as 
seen below.

An application to biology

In biology and medicine, one is often interested in describing how a chemical compound such as 
drug accumulates in cells as the compound diffuses across cell walls. One model that can be used to 
approximate this process consists of a sequence of n compartments or boxes which corresponds to the 
cells in which the compound is accumulating and which are arranged linearly as shown in Figure 5, we 
propose to derive equations that describe the diffusion process under the following assumptions.
1. The distribution of the compound within each cell is uniform at all times.
2. The rate of diffusion of the compound from cell i−1 to cell (amount per unit time per unit of cell wall 

area shared) is a constant, ∝i−1i times the concentration of the compound (amount per unit volume) 
in cell i−1 similarly, the rate of diffusion from cell back 1 to cell i−1 is a constant, ∝i−1i times the 
concentration in cell i.

3. The volume of each cell is equal to the area of each wall of the cell across which the compound is 
being diffused. (this would be the ease, i.e., if the cell were assumed to be unit cubes with shared 
faces)

With these assumptions in force, we let Ci = Ci (t) denote the concentration of the compound in that time 
t then as shown in Figure 1 diffusion across the walls between cell i−1 and i+1 causes C1 to increase at 
the rate.

∝i−1−i + ∝i11,i Ci 1 i, (3.1)
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And decrease at the rate

(∝ii-1 + ∝ii+,1) Ci (3.2)

This expression also applies to the cell at the end of the sequence if we set

∝0,1 = ∝1,0 ∝nn+1 ∝n+1,n = 0

If follows from (5.1) and (5.2) that the rate of change of the concentration in the ith cell is

dC

d
C C Ci

i i i i i i i i i i i<
=∝ − ∝ +∝( ) +∝− − − + + +, , , ,1 1 1 1 1 1  (3.3)

Thus, the diffusion process is described mathematically by a system of nth first-order constant coefficient 
linear differential equations in n unknowns.
In the interest of further simplicity w now assume that we are confronted with only two types of cell, 
which alternate in sequence and which have respective diffusion rates  and β. Then, if the sequence 
starts with a cell whose diffusion rate is ∝ (3.2) becomes

dC

dt
C C

dC

dt
C C C

dC

dt
C C

1
1 2

2
1 2 3

3
2 3

2

2

=−∝ +

=∝ − +

= − ∝

b

b b

b ++bC4



In actual practice, the number of cells in the sequence is usually large, and (3.3) must be solved on a 
computer. Nevertheless, it is instructive to consider this system for small values of n, if only to determine 
whether the solutions conform to our expectations of what ought to happen.
The two-cell model. Suppose that the sequence consists of only two cells and a unit amount of the 
compound is injected into the first cell at time t = 0 the concentration in the second cell being zero. In 
this (3.3) reduces to the 2 × 2 system.

dC

dt
C C

dC

dt
C C

1
1 2

2
1 2

=−∝ +

=∝ −

b

b
 (3.4)

Figure 1: Diffusion across the walls
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And is subject to the initial condition

C1 (0) = 1, C2 (0)= 0

The characteristic equation of the coefficient matrix of (5.4) is

λ2 + ( + β) λ = 0

And the eigenvalues for the system therefore are

λ = 0 and λ= −( + β)

A routine calculation reveals that

E and E0

1
1

1
+ ∝
















=
−








− ∝ +( )

b
b

are eigenvectors belonging to these eigenvalues. It follows that the general solution of (5.4) is

C t A Be

C t A Be

t

t

1

2

( ) = +

( ) = ∝ −







− ∝ + ÷( )

− ∝ +( )

b

b

b

Finally, the given initial conditions imply that

A and B=
∝+

= ∝
∝+

b
b b

and hence that

C t e

C t e

t

t

1

2 1

( ) =
∝+

+ ∝
∝ +

( ) =
∝ +

−( )

− ∝+( )

− ∝+( )

b
b b
b
b

b

b

Note that as t → ∞, C1 (t) and C2 (t) approach the steady-state values,

C C1 2=
∝+

= ∝
∝+

b
b b

Moreover, in the steady state, the concentrations in cell 1 and 2 are in the ratio b
∝

 both these results are 
just what one would expect.

An Application to Physics

Imagine two masses m1 and m2 coupled as shown in Figure 2 and constrained to vibrate horizontally. We 
seek equations of motion for this system under the assumptions that it is immersed in a viscous medium 
which gives rise to retarding forces directly proportional to the velocities of the masses and that each 
mass is subject to an external force that varies with time.
We begin our analysis be letting l1, l2 and i3 denote the natural lengths of the spring s as they appear from 
left to right in the figure, and k1, k2 and k3 their respective spring constants. There are three kinds of forces 
acting on the first mass:
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1. Restoring forces k1 (x1 − x0 − l1) and (x2 − x1 −l2) [Figure 3]

2. A retarding force a1,
dx

dt
1 ,a1 a constan

3. As external force F1 = F1 (t).
Similar forces act on the second mass, and therefore, Newton’s second law implies that the motion of the 
system is governed by the pair of second-order linear differential equations.

m
d x

dt
k x x l k x nx l a

dx

dt
F t

m

1

2
2

2 1 1 0 2 2 2 2 1 1
1

1=− − −( )+ − −( )− + ( )

22

2
2

2 1 2 1 2 2 3 2 3 2
2

2

d x

dt
k x x l k x x l a

dx

dt
F t=− − −( )+ − −( )− + ( )

 (3.2.1)

In the interest of simplicity, we now assume that,

l1 = l2= l3 = l and k1 = k2 = k3=k

Then, (3.2.1) can be rewritten as

m
d x

dt
a

dx

dt
k x x x F t

S
d x

dt
a

dx

dt

1

2
1

2 1
1

0 1 2 1

2

2
2

2 2
2

2+ − − +( ) =

+ −

( )

( )k x x x F t1 2 3 22− +( ) =
 (3.2.2)

Up to this point, we have allowed x0 and x3 to vary with time. We now assume, however, that they are 
fixed with x0 = A0 and x2 = A2. Then, when F1 and F2 are identically zero, (3.2.2) has the unique time-
independent solution.

x A A

x A A

1 0 3

2 0 3

2

3

1

3
1

3

2

3

= +

= +
 (3.2.3)

Figure 2: The unique time-independent solution [X0 – X3]

Figure 3: The unique time-independent solution [X0 – X2]
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Found by setting the derivative in each equation equal to zero and solving for x1 and x2. Thus, in 
the absence of external forces and moving boundaries the spring–mass system is in equilibrium 
with the masses equally spaced between the walls that make a change of variables and measure 
displacements form these equilibrium positions which we now denote by A1 and A2 respectively.[9] 
Hence, we set

y x A and y x A1 1 1 2 2 2= − = −

In addition, we introduce the momentum variables

y m
dx

dt
and y m

dx

dt3 1
1

4 2
2= =

Thereby, converting (3.2.2) into the first-order system

dy

dt m
y

dy

dt m
y

dy

dt
k ky

a

m
y F t

dy

dt

y

1

1
3

2

1
4

3
1 2

1

1
3 1

4

1

1

2

=

=

= − + − + ( )

== − − − + ( )ky k
a

m
y F ty1 2

2

2
4 22

This system can be written in matrix form as

Y| = Ay+B (3.2.4)

Where

A

m

m

k k
a

m

k k
a

m

=
− −

− −






























0 0
1

0

0 0 0
1

2 0

2 0

1

2

2

2

2

2


= ( )

















( )

B
F t

F t

0

0

1

2

The characteristic polynomial of A is

 4 1

1

2

2

3 1 2

1 2 1 2

1

2
1 1

2

+ +






+ + +
















+

a

m

a

m

a a

m m
k

m m

k

m mm
a a

k

m m
t

2
1 2

2

1 2

23+( ) + .

 (3.2.5)

We now simplify the problem further by assuming that the viscous forces acting on the masses can be 
ignored. Then, a1=a2=0, and the characteristic equations of A become.
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 4

1 2

2
2

1 2

2
1 1 3

0+ +






+ =k
m m

k

m m

We find that

λ µ µ µ µ µ µ2
1 2 1 2

2

1 23= − +( )± +( )k [ - ]

Where,

1 2
1 2

1 1
 

m m
 = =

And,

(μ1+μ2)
2−3μ1 μ2>0

Hence, the eigenvalues for this problem have the form

λ1 = (t)i, λ2 = −(t) i

λ3 = vi, λ4 = −vi, (3.2.6)

With (t) >0 and v >0 to find eigenvectors for these eigenvalues, we must find a non-trivial solution of

0 0 0

0 0 0

2 0 0

2 0 0

1

2

1

2

3

4

µ
µ

λ
k k

k k

y

y

y

y

i

− −





































=

yy

y

y

y

1

2

3

4



















As λ1 assumes each of the values λ1, λ2, λ3, λ4 we omit the computational details and simply assert that 
vectors

k

k

k

k

i

i

i i

2

2

2

1

1

2

2

1

+

+





























λ
µ

λ
µ

λ
µ

λ
µ

( )

 (3.2.7)

Satisfy the system. Thus, when there are no viscous forces, the homogeneous equation,

Y’ = AY,

Has the four linearly independent solutions

Yi (t) = Eλi e
λit

And,
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