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ABSTRACT
We know that a large number of problems in differential equations can be reduced to finding the solution 
x to an equation of the form Tx=y. The operator T maps a subset of a Banach space X into another Banach 
space Y and y is a known element of Y. If y=0 and Tx=Ux−x, for another operator U, the equation Tx=y 
is equivalent to the equation Ux=x. Naturally, to solve Ux=x, we must assume that the range R (U) 
and the domain D (U) have points in common. Points x for which Ux=x are called fixed points of the 
operator U. In this work, we state the main fixed-point theorems that are most widely used in the field 
of differential equations. These are the Banach contraction principle, the Schauder–Tychonoff theorem, 
and the Leray–Schauder theorem. We will only prove the first theorem and then proceed.
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INTRODUCTION

Banach contraction principle: Let X be a Banach 
space and M be a nonempty closed subset of X. 
Let T: M−M be an operator such that there exists a 
constant k∈ (0,1) with the property.[1-5]

                                                   Tx Ty k x y for every x y M   ‖ ‖ ‖ ‖  (1.1)

Then, T is said to have a unique fixed point in M. 
This result is known as the contraction mapping 
principle of the fixed-point theorem which we can 
establish as follows:
Let x∈M be given with T(x0)=x0, define the 
sequence 0{ }∞mx  as follows:

  1,   1, 2j jx Tx j−= = …  (1.2)

Then, in William et al.’s study (2001), we have
‖xj+1−xi‖≤k‖xj−xj−1‖≤k2‖Xj−1−xj−2‖≤∈≤kj‖x1−x0‖
For every j≥1, if m<n≥1, we obtain
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Since kn→0 as n→∞, it follows that { }
0 mx

m

∞
=

 is 

a Cauchy sequence. Since X is complete, there 
exists x̄∈X such that xm→ x̄. Obviously, x̄∈X 
because M is closed; taking limits as j → ∞, we 
obtain x̄=Tx. To show uniqueness, let y be another 
fixed point of T in M. Then,

‖x̄−y‖=‖Tx−Ty‖≤k‖x̄−y‖
This completes the proof, which implies x̄=y an 
operator T. M−X, M⊂X, satisfying (1.2) on M is 
called a “contraction operator on M.”
To illustrate the above due to Kelly (1955) 1.2, let 
F: R. XRn →Rn be is continuous such that

‖F(t,x1)−F(t,x2)‖≤λ(t)‖x1−x2‖
For every t∈R+, x1, x2 ∈Rn where λR+→R+ is 
continuous such that
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L   t dt
∞

= <+∞∫

Assume further that

( )
0

 , 0   F t dt
∞

<+∞∫‖ ‖

Then, the operator T with

( )( ) ( )( ) ,  ,   .
t

TX t F s x s ds t R
∞

= ∈∫

maps the space Cn(R+) into itself and is a contraction 
operator on Cn(R+) if L<1.

In fact x, y, C Rn
n

+( ) be given. Then, due to Bielicki, 

1956, we have[6]
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It follows that if L<1, the equation Tx=x has a 
unique solution x̄ in C Rn

n
+( ) , thus a unique 

x C Rn
n�∈ ( )+  such that

x t F s x s ds t R
t

( ) = ( )( ) ∈
∞

+∫ , , � �

It is easily seen that under the above assumptions 
on F and L (Banach, 1922), the equation is as 
follows as:

( ) ( ) ( ) ( , )  
t

x t f t F s x s ds
∞

= + ∫

Furthermore, it is a unique solution in C Rn
n

+( )  if 
f is a fixed function in C Rn

n
+( ) . This solution 

belongs to Cn if fϵCn.

THE SCHAUDER–TYCHONOOFF 
FIXED-POINT THEOREM

Before we state the Schauder–Tychonoff theorem, 
we characterize the compact subsets of Cn 
[a,b]. [7] This characterization, which is contained 
in theorem 2 and 5, allows us to detect the relative 
compactness of the range of an operator defined on 
a subset of Cn [a,b] and has values in Cn [a,b]. We 
define below the concept of a relatively compact, 
and a compact, set in a Banach space.[11-16]

Definition 2.1[8]

Let X be a Banach space. Then, a subset M of X is 

said to be “compact” if every sequence x
nn{ } ∞
=1

 

in M contains a subsequence which converges, 

i.e., x
nn{ } ∞
=1

 from M contains a subsequence 

which converges to a vector in X.
It is obvious from this definition that is relatively 
compact if and only if M  (the closure of M in the 
norm of X) is compact. The following theorem 
characterizes the compact subsets of Cn [a,b].

Theorem 2.1 (H-gham and Taylor, 2003)

Let M be a subset of Cn [a,b]. Then, M is relatively 
compact if and only if
(i) There exists a constant K such that ‖f‖∞≤K, f∈M
(ii) The set M is “equicontinuous” that is for every 

ϵ>0 there exists δ(ϵ)>0 depending only on (ϵ) 
such that ‖f (t1)−f(t2)‖<ϵ for all t1, t2 ∈ [a,b] with 
|t1−t2|<δ(ϵ) and all f∈M

The proof is based on Lemma 2.3. We start with 
definition 2.2.

Definition 2.2[9]

Let M be a subset of the Banach space X and let ϵ>0 
be given. Then, the set M1⊂X is said to be an “ϵ-net 
of M” if for every point x∈M1 such that ‖x−y‖<ϵ.

Lemma 2.2 (Andrzej and Dugundji, 2003)

Let M be a subset of a Banach space X. Then, M is 
relatively compact if and only if for every ϵ>0 and 
there exists a finite ϵ net of M in X.
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Proof

Necessity. Assume that M is relatively compact 
and the condition in the statement of the lemma 
is not satisfied. Then, there exists some ϵ0>0, for 
which there is no finite ϵ0 net of M, Choose x1∈M, 
then, {x1} is not an ϵ0 net of M. Consequently, 
‖x2−x1‖≥ϵ0 for some x2 ∈M. Now consider the set 
{x2−x1}. Since this set is not an ϵ0 net of M, there 
exists x3, ∈, with ‖x3−x1‖≥ϵ0 for i=1, 2. Continuing 
the same way, we construct as certain any Cauchy 
sequence, and it follows that no convergent 
subsequence can be extracted from {xn}. This is 
a contradiction to the compactness of M; thus, for 
any ϵ>0, there exists a finite ϵ net for M

Sufficiency

Suppose that for every ϵ>0, there exists a finite ϵ net 
for M and consider a strictly decreasing sequence, 
n=1, 2… of positive constants such that limn→∞ϵn=0. 
Then, for each n=1, 2…, there exists a finite ϵ net 
of M; if we construct open balls with centers at the 
points of the ϵ1 net and radii equal to ϵ1, then every 
point of M belongs to one of these balls.

Now, let { }x
nn

∞
=1

be a sequence in M. Applying 

the above argument, there exists a subsequence of 
{ } 1,2  { }

1jn nx n say x
j

∞
= …

=  which belongs to 
one of these ϵn- balls. Let B (y1) be the ball with 
center y1. Now, we consider the ϵ2 net of M. The 
sequence{x’} has now a subsequence 

{ }'' , 1, 2nx n = …  which is contained in some 

ϵ2- ball. Let us call this ball B (y2) with center at y2. 
Continuing the same way, we obtain a sequence of 

balls { }y
nn

∞
=1

 with centers at yn+1, radii −ϵn, and 

with the following property: The intersection of 
any finite number of such balls contains a 
subsequence of {xn}. Consequently, choose a 

subsequence { }  { }
1 kn nx of x

k

∞
=  as follows:
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Since xnj, xnk ∈B(y2) for j≤k, we must have

2
j k j k kn n n k k nx x x y y x     ‖ ‖‖ ‖ ‖ ò

Thus, {xnj} is a Cauchy sequence, and since X 
is complete, it converges to a point in X. This 
completes the proof.

Proof of Theorem 2.1

Necessity suffices to give the proof for n=1. We 
assume that M is relatively compact. Lemma 2.1 
implies now the existence of a finite ϵ-net of M 
for any ϵ>0. Let x1, x2(t)… xn(t), t∈ [a.b] be the 
function of such an ϵ-net. Then, for every f∈M, 
there exists xk(t) for which ‖f−xk‖∞<ϵ consequently,
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 (2.1)

Choose, now, K=max‖xk‖∞+ϵ. Since each function 
xk (t) is uniformly continuous on [a,b,], there exists 
δk(ϵ)>0, k=1,2… such that

|xk(t1)|∞<ϵ for |t1−t2|<δk(ϵ)

δ=min {δ1,δ2,…δn} suppose that x is a function in 
M and let xj be a function of the ϵ-net for which 
‖x−xj‖∞<ϵ. Then,

     
 

1 2 1 1 1 2

1 2

  ( ) ( ) ( )

 ( )

     
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j j j
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x x x t x t

  

‖ ‖

 (2.2)

For all t1, t2 ∈ [a,b] with |t1−t2|<δ(ϵ). Consequently, 
M is equicontinuous. The boundedness of M is as 
follows.

Sufficiency

Fix ϵ>0 and pick δ=δ(ϵ)>0 from the condition 
of equicontinuity. We are going to show the 
existence of a finite ϵ-net for M Divide [a,b] into 
subintervals [tk−1, tk], k=1,2,…n with t0=a, tn=b, 
and tk−tn−1<δ. Now, define a family P of polygons 
on [a,b] as follows: the function f: [a,b]→[−K,K] 
belongs to P if and only if f is a line segment on 
[tk−1, tk] for k=1,2…and f is continuous. Thus, if 
f∈P, its vertices (endpoints of its line segments) 
can appear only at the points (tk, f(tk), k=0,1…n. 
It is easy to see that P is a compact set in C1 
[a,b]. We show that P is a compact ϵ net of M. To 
this end, let t ∈ [a,b]. Then, t ∈ [tj−1, tj] for some 
j=1,2…n. If Mj and mj denote the maximum and 
the minimum of tj−1, tj, respectively, then

mj≤x(t)≤Mj
mj≤x̄(t)≤Mj
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Where, x̄0:[a,b]−[K,K] is a polygon in P such that 
x̄0(tk)=tkk=1,2…n. It follows that

|x(t)−x̄0(t)|=≤Mj−mj<ϵ
Thus, P is a compact ϵ net for M. The reader can 
now easily check that since P has a finite ϵ-net, say 
N, the same N will be a finite 2ϵ-net for M. This 
completes the proof.
The following two examples give relatively 
compact subsets of functions in Cn [a,b].
Example 2.3: let M C a bn∈ 1[ , ]  be such that there 
exists positive constants K and L with the property:
i. ‖x(t)‖≤K, t∈ [a,b] (2.3)
ii. ‖x’(t)‖≤L, t∈ [a,b]

For every x∈M, M is a relatively compact subset 
of C a bn

1[ , ] ; in fact, the equicontinuity of M 
follows from the Mean Value Theorem for 
scalar-valued functions.

Proof for Equicontinuity

Consider the operator T of example 1.3.2. Let 
M⊂Cn [a,b] be such that there exists L>0 with the 
property:

‖x(t)‖≤L for all x∈M
Then, the set S={Tu: u∈M} is a relatively compact 
subset of Cn [a,b]. In fact, if

N K t s ds
t a b a

b

=
∈

∫sup ( , )
[ , ]

  1 ,

‖f‖≤LN for any f∈S. Moreover, for f=Tx, we have

   f t f t K t s K t s x s ds

L K t s K

a

b

a

b

1 2 1 2

1

( ) − = ( )− ( )  ( )

≤ ( )−

∫

∫

( ) , ,

, tt s ds2 ,( )

This proves the equicontinuity of S

Definition 2.3 (Banach, 1922)

Let X be a Banach space. Let M be a subset of X. 
Then, M is called “convex” if λx+(1−λ)y∈M for 
any number λ∈ [0,1] and any x,y∈M.

Theorem 2.2 (Schauder–Tychonoff)

Let M be a closed, convex subset of a Banach 
space X. Let T: M→M be a continuous operator 
such that TM is a relatively compact subset of X. 
Then, T has a fixed point in M.
It should be noted here that the fixed point of T in 
the above theorem is not necessarily unique. In the 
proof of the contraction mapping principle, we 

saw that the unique fixed point of a contraction 
operator T can be approximated by terms of a 

sequence { } 1 with   1, 2,  
0n j jx x Tx j

n −

∞
= = …

=
Unfortunately, general approximation methods 
are known for fixed points of operators as in 
theorem 2.2. which suggests the following 
definition of a compact operator.

Definition 2.4[10]

Let X, Y be two Banach spaces and M a subset of 
X. An operator T: M→Y is called “compact” if it 
is continuous and maps bounded subsets of into 
relatively compact subsets of Y.
The example 2.14 below is an application of the 
Schauder–Tychonoff theorem.

< > ( ) ( ) + ( ) ( )∫Tx t F T K t s x s ds
a

b

,

Where, f∈Cn [a,b] is fixed and K: [a,b]x[a,b]→Mn 
is continuous. It is easy to show as in examples 
1, 3 and 2, 9, that T is continuous on Cn [a,b] and 
that every bounded set M⊂Cn [a,b] mapped by T 
onto the set TM is relatively compact. Thus, T is 
compact. Now let
M={u∈Cn[a,b]; ‖u‖∞≤L}
Where L is a positive constant. Moreover, let 
K+LN≤L where,

1
[ , ]

  , sup ( , )
b

t a b a

K f N K t s ds∞
∈

= = ∫‖ ‖ ‖

Then, M is a closed, convex, and bounded 
subset of Cn [a,b] such that TM⊂M. By the 
Schauder–Tychonoff theorem, there exists at least 
one x0∈Cn [a,b] such that x0=Tx0. For this x0, we 
have

( ) ( ) ( ) ( )0 0, ,  [ , ]
b

a

x t f t K t s x s ds t a b= + ∈∫

Corollary 2.4 (Brouwer’s Theorem: Let 
S={u∈Rn;‖u‖≤r}
where r is a positive constant. Let T: S→S be 
continuous. Then, T has a fixed point in S

Proof

This is a trivial consequence of theorem 2.2 
because every continuous function f: S→Rn is 
compact.
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THE LERAY–SCHAUDER THEOREM

Theorem 3.1 (Leray–Schauder)[8]

Let X be a Banach space and consider the equation.
  S(x,μ)−x=0 (3.1)
where:
i) SX x [0,1]→X is compact in its first variable 

for each μ∈ [0,1]. Furthermore, if M is a 
bounded subset of X, S (u,μ) is continuous 
in μ uniformly with respect to u∈M; that is 
for every ϵ>0, there exists sδ(ϵ)>0 with the 
property: ‖S(u,μ1)−S(u,μ2‖<ϵ for every μ1, μ2 ∈ 
[0,1] with |μ1−μ2|>δ(ϵ) and every u∈M

ii) S(x,μ0)=0 for some μ0∈ [0,1] and every x∈X
iii) If there are any solutions xμ of the equation (2.4), 

they belong to some ball of X independently of 
μ∈ [0,1].

Then, there exists a solution of (3.1) for every 
μ∈ [0.1],
The main difficulty in applying the above theorem 
lies in the verification of the uniform boundedness 
of the solutions (condition (iii). There are no 
general methods that may be applied to check 
condition.
As an application of theorem 3.1, we provide 
example 3.1

Example 3.1 (Arthanasius, 1973)

Let F: Rn→Rn be continuous and such that for 
some r>0

<F(x), x>≤‖x‖2 whenever ‖x‖>r
Then, F(x) has at least one fixed point in the ball

Sr=[u∈Rn: ‖u‖<r]
Proof
Consider the equation

μF(x)−(1+ϵ)x=0
With constants μ∈ [0,1], ϵ>0. Since every 
continuous function F: Rn→Rn is compact, the 
assumptions of theorem 3.1 will be satisfied for 
(3.1) with S(x,μ)=[μ⁄((1+ϵ)]F(x)) if we show that 
all possible solutions of (3.1) are in the ball Sr. In 
fact, let x̄ be a solution of (3.1) such that ‖x̄‖>r. 
Then, we have

<μF(x̄)−(1+ϵ) x̄, x̄>=0
Or

<μF(x̄) x̄>=(1+ϵ)<x̄, x̄>=(1+ϵ)‖x̄‖2

This implies that
<F(x̄)x̄)>≥(1+ϵ)‖x̄‖2

For some x̄∈Rn with ‖x̄‖>r, which is a contradiction 
to (3.1).
It follows by theorem 3.1 that for every ϵ>0, the 
equation (3.1) has a solution xϵ for μ=1 such that 

‖xϵ‖≤r. Let ϵm=1⁄(m,m=1,2…) and let x(∈m)=xm 

since the sequence x
mn{ } ∞
=1

 is bounded, it 

contains a convergent subsequence x
kn{ } ∞
=1

�  let 

xmk→x0 as k→∞ then x0∈Sr and

( )  (1 (1/ )) 0, 1, 2 .
k km k mF x m x k− + = = …

Taking the limit of the left hand side of the above 
equation as k→∞ and using the continuity of F, 
we obtain

F (x0)=x0
Thus, x0 is a fixed point of F in Sr.

CONCLUSION

The problem of fixed point is the problem of 
finding the solution to the equation y=Tx=0. It is 
important that the domain of T and the range of 
T have points in common, and in this case, such 
points of x for which Tx=x are regarded as the fined 
points of the operator T; also, the work reveals that 
the contraction mapping principle must be satisfied 
for a fixed point to exist as other basic results 
center on the need for the relative compactness of 
a subset, M of Cn [a,b] if there must be a fixed 
point of T in M.
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