
www.ajms.com 51

ISSN 2581-3463

RESEARCH ARTICLE

Simplified Traffic Lights Using 8051 Maxim DS89C4XX Embedded Controller
(MDE)

Rotimi-Williams Bello1, Daniel Adebiyi Olubummo2

1Department of Mathematical Sciences, University of Africa, Toru-Orua, Bayelsa, Nigeria, 2Department of
Computer Science, Federal Polytechnic, Ekowe, Bayelsa, Nigeria

Received: 20-05-2019; Revised: 10-06-2019; Accepted: 20-07-2019

ABSTRACT
Traffic lights are signaling devices positioned at road intersections, pedestrian crossings, and other
locations to control flows of traffic. An actual traffic light alternates the right way of road users by
displaying lights of a standard color (red, yellow/amber, and green), using a universal color code (and
a precise sequence to enable comprehension by those who are color blind). In the typical sequence
of colored light, (1) illumination of the green light allows traffic to proceed in the direction denoted;
(2) illumination of the yellow/amber light denoting ready to proceed in the direction denoted; and
(3) illumination of the red signal prohibits any traffic from proceeding. Usually, the red light contains
some orange in its hue, and the green light contains some blue, for the benefit of people with red-green
color blindness, and green lights in many areas are in fact blue lenses on a yellow light (which together
appear green). Program was written for the MDE trainer kit to control the outputs of the microcontroller
in a given sequence. Green and red light-emitting diodes (LEDs) are connected to the microcontroller
outputs. First, the assembly language programs were written to turn on only one LED and then turn off
the same LED. Next, the program is improved by making the LED blink, and then, the input switches are
read. The walk push button and the other indicating a car at the crossing light are turned on. As switches
are mechanical objects, some debounce time (timer programmed dead time of 50 ms) is also placed in
the program. The light is controlled as long as each LED with one switch is pressed, and the LED is ON
and when the switch is not depressed, the LED is OFF. Then, the LED will be made to blink once per
second as long as the associated switch is ON. Finally, the program is improved when a subroutine is
added where the traffic light controller is on green or red stays ON while the corresponding switch is ON.
If more than one switch is activated, then the ON is for the red light. The LEDs simulate the traffic lights
and switches simulate the walk push button and the car presence sensor at a crossroad.

Key words: Traffic light, red light, green light, yellow light, light-emitting diodes, switch,
microcontroller

INTRODUCTION

The essence of traffic lights is to avert road
accidents which can lead to catastrophic. The
history behind the development of traffic light can
be traced to the 18th century when the first gas-lit
traffic lights earlier proposed by British railway
engineer, J. P. Knight, were installed outside the
houses of parliament in London. This was to
control the traffic of horse carriages around the

Address for correspondence:
Rotimi-Williams Bello,
E-mail: sirbrw@yahoo.com

area and to ensure the safety of the pedestrians
crossing the roads. The method of operating
this gas-fuelled traffic lights involved manual
operation where the controller (policeman) would
have to either raise or lower the semaphore arms
used for the operation during the daytime to signal
moving vehicles to either stop or proceed. Gas-lit
red and green lights were used at night instead of
the semaphore arms where red signaled stoppage
of vehicles and green signaled proceed. Red
color was used to signal stop due to its danger
and caution attributes while green was used to
signal proceed because most cultures accepted it
to be more reassuring danger-free color. Different

Bello and Olubummo: Simplified traffic lights using embedded controller

AJMS/Jul-Sep-2019/Vol 3/Issue 3 52

negative incidents of light explosion were recorded
with the use of gas-lit traffic lights; this caused so
much injury to the operators and controllers of the
gas-lit traffic lights making it not completely save
to rely on.
The limitation of the traditional method of
controlling traffic coupled with the growth
in industrialization and automobiles which
made cities to become crowded motivated the
development of electric traffic light method of
controlling traffic. This electric traffic light was
conceived in 1912 by Lester Wire, an American
policeman to replace the gas-lit traffic lights, but
this technology lacked the yellow light, instead of
the yellow light, it used buzzer sound to signal get
ready status. The limitation found in the work of
Lester Wire motivated another policeman named
William Potts in Detroit, Michigan, to invent first
four-way and three-colored traffic lights that had
yellow/amber as the third color [Figure 1a].
The automated traffic lights were a huge success
toward the middle of the 19th century; lights
were changed by themselves at a fixed interval
though causing unnecessary queuing as the light
would be red even in the absence of traffic.
This also led to what motivated engineers and
scientists to think of a better traffic monitoring
system. Charles Adler Jr. had a brief contribution
to traffic system with his invented machine
that could detect vehicle’s honking and change
signals accordingly, but the noise generated
by this invention during its operation due to
the unnecessary honking of vehicles, thereby
causing excruciating experience to passerby and
people living around the place the machine was
mounted, this led to its ban.[1]

Traffic lights started to become computer-aided
during the early 1960s [Figure 1b] making all the
limitations experienced in the early inventions
perfected. Powerful software applications were
designed that could predict and control the traffic
of congested cities. This paper contributes to
the traffic lights technology by writing program
for the MDE trainer kit to control the outputs of
the microcontroller in a given sequence, thereby
simplifying traffic light. The remainder of the
paper is structured as follows. In Section 2, the
programs involved in application simplified
traffic light are shown. Laboratory experimental
results and discussion of application simplified
traffic light are presented in Section 3. Section 4
concludes the paper.

APPLICATION PROGRAM TRAFFIC
LIGHT

Presented in this section is a program we wrote
for the application simplified traffic light. The
application program traffic light is the foundation
on which the application simplified traffic lights in
Section 3 is based.

Simple traffic light program

• THIS PROGRAM WILL MAKE THE
LED TURN OFF AND THEN ON. LED IS
CONNECTED TO P1.1
1. ORG 00H
 THE ORG OOH TELLS THE

MICROCONTROLLER FROM WHERE
IT SHOULD START

2. AGAIN: CLR P1.1; NOW THE BIT P1.1
IS LOW. THIS MEANS THAT THE LED
IS OFF

3. MOV R1, #0FFH; MOVES FF HEXA I.E
255 (DECIMAL) TO R1

4. HERE: DJNZ R1, HERE; DECREMENTS
R1 AND THEN CHECKS IF R1 IS ZERO

• OTHERWISE JUMPS TO HERE AND
DECREMENTS R1
5. SETB P1.1; SETB SETS THE P1.1 AND

THE LED IS NOW TURNED ON
THE CODE BELOW IS TO ADD A LITTLE

DELAY TO OBSERVE THE OUTPUT
6. MOV R1, #0FFH
7. HERE2: DJNZ R1, HERE2

• IMPROVE THE PROGRAM BY MAKING
THE LED BLINK. THIS WILL MAKE

Figure 1: (a) Traffic lights, (b) Traffic light control module
using sensors

b

a

Bello and Olubummo: Simplified traffic lights using embedded controller

AJMS/Jul-Sep-2019/Vol 3/Issue 3 53

THE LED BLINK INDEFINITELY. LED IS
CONNECTED TO P1.1
8. ORG 30H; THIS ORG 30H TELLS THE

MICROCONTROLLER FROM WHERE
IT SHOULD START

9. CLR P1.1; NOW THE BIT P1.1 IS LOW.
THIS MEANS THAT THE LED IS OFF

10. MOV R1, #0FFH; MOV COMMAND
MOVES FF HEXA I.E 255 (DECIMAL)
TO R1

11. DJNZ R1, HERE; DJNZ DECREMENTS
R1 AND THEN CHECKS IF R1 IS ZERO
OTHERWISE JUMPS TO HERE WHERE
IT DECREMENTS R1 AGAIN

12. SETB P1.1; SETB SETS THE P1.1 AND
THE LED IS NOW TURNED ON

13. MOV R1, #0FFH
14. DJNZ R1, HERE2; DELAY TO OBSERVE

THE OUTPUT
15. JMP AGAIN; JUMPS THE PROGRAM

BACK TO LINE 07 AND THE
PROGRAM CONTINUES.IN THIS III.
WAY WE CAN MAKE THE LED BLINK

16. END
• THE NEXT PART OF THE LABORATORY

IS TO READ THE INPUT SWITCHES,
ONE FROM THE WALK PUSH BUTTON
AND THE OTHER INDICATING A CAR
AT THE CROSSING. AS SWITCHES
ARE MECHANICAL OBJECTS; SOME
DEBOUNCE TIME (DEAD TIME) WILL
ALSO BE PLACED IN THE PROGRAM.
EACH LED WILL BE CONTROLLED WITH
ONE SWITCH; AS LONG AS THE SWITCH
IS ACTIVE; THE RESPECTIVE LED IS ON
AND WHEN SWITCH IS INACTIVE, THE
CORRESPONDING LED IS OFF. THEN,
THE LED WILL BE MADE TO BLINK AS
LONG AS SWITCH IS ON

• THIS PROGRAM WILL TAKE THE INPUT
FROM A SWITCH AND CONTROL THE
LED
17. SW1=P1.1;SW2=P1.3; LED1=P3.1;

LED2=P3.2
18. EQU; TAKES THE INPUT AND

ASSIGNS IT A NAME
19. SW1 EQU P1.1
20. SW2 EQU P1.3
21. LED1 EQU P3.1
22. LED2 EQU P3.3
23. ORG 00H

24. MOV P1, #0FFH; MAKES THE PORT
1 AS INPUT PORT SO IT BEHAVE AS
INPUT

25. MOV P3, #00H; MOVES ALL ZEROS
TO PORT 3 MAKES THEM TO BEHAVE
AS OUTPUTS

26. CHKSW1: JNB SW1, CHKSW2; IF
SWITCH 1 IS OFF P1.1 IS LOW THEN
CHECK IF SWITCH 2 IS ON

27. CLR LED2; TO SWITCH OFF LED IF IT
WAS ON

28. CPL LED1; MAKE THE LED BLINK.
CPL IS THE COMMAND FOR
COMPLIMENT WILL INVERT THE
LED FROM ITS PREVIOUS STATE IF
THE LED IS ON THEN NOW IT WILL
BE OFF AND VICE VERSA

29. MOV R1, #0A0H
30. DJNZ R1, HERE

• CALL DEADTIME; CALL A SUBROUTINE
“DEADTIME.” AS THIS WILL BE USED
A COUPLE OF TIMES SO IT IS BETTER
TO MAKE SUBROUTINE RATHER THAN
WRITING THE CODE AGAIN AND AGAIN
31. JMP CHKSW1; THIS CHECKS

WHETHER THE SW1 IS STILL ON OR
NOT IF YES IT WIL MAKE THE LED
BLINK

32. CHKSW2: JNB SW2, CHKSW1
33. CLR LED1; TO WITCH THE LED1 OFF

IT WAS STILL ON
34. CPL LED2; MAKE THE LED BLINK.

CPL IS THE COMMAND FOR
COMPLIMENT WILL INVERT THE
LED FROM ITS PREVIOUS STATE IF
THE LED IS ON THEN NOW IT WILL
BE OFF AND VICE VERSA

35. MOV R1, #0A0H
36. DJNZ R1, HERE2
37. CALL DEADTIME; CALL A

SUBROUTINE “DEADTIME.” AS
THIS WILL BE USED A COUPLE OF
TIMES SO IT IS BETTER TO MAKE
SUBROUTINE RATHER THEN
WRITING THE CODE AGAIN AND
AGAIN

38. JMP CHKSW2; THIS CHECKS
WHETHER THE SW2 IS STILL ON OR
NOT IF YES IT WIL MAKE THE LED
BLINK

39. DEADTIME

Bello and Olubummo: Simplified traffic lights using embedded controller

AJMS/Jul-Sep-2019/Vol 3/Issue 3 54

40. MOV R1, #0AH; MOVES 10 HEXA TO R1
41. MOV R2, #0FFH; MOVES FFHEXA TO R2
42. BACK: DJNZ R2, BACK; THIS IS

CALLED THE INNER LOOP IT WILL
DECREMENT R2 255 TIMES BEFORE
GOING TO THE NEXT STATEMENT

43. DJNZ R1, AGAIN; THIS IS THE OUTER
LOOP ONCE THE INNER LOOP IS
COMPLETED IT DECREMENTS BY 1.
THIS MAKES THE INNER LOOP RUN
10 TIMES

44. RET; THIS COMMAND TELLS THE
MICROCONTROLLER TO RETURN
TO THE LAST COMMAND

• CHECK: CHECKING INPUT OF SWITCHES.
45. ORG 0000H
46. MOV R0, #SW1; MOVING SWITCH1

INPUT IN R0
47. MOV R1, #SW2; MOVING SWITCH2

INPUT IN R1
48. CPL SW1
49. CPL SW2
50. JMP RED
51. JMP GREEN
52. JMP CHECK
53. GREEN
54. LOOP1
55. CLR P1.1
56. CALL DELAY
57. SETB P1.1
58. CALL DELAY
59. JMP LOOP1
60. RED
61. LOOP
62. CLR P1.3
63. CALL DELAY
64. SETB P1.3
65. CALL DELAY
66. JMP LOOP
67. DELAY
68. MOV R7, #100
69. L1_DELAY
70. DJNZ R7, L1_DELAY
71. RET
72. END.

Simple traffic light program

1. #include<reg51.h>
2. void timer()
3. {

4. TF0=0;
5. TMOD=0X01;
6. TH0=0X3C;
7. TL0=0X60;
8. TR0=1;
9. while(TF0==0);
10. TF0=0;
11. }
12. void delay(unsigned int sec)
13. {
14. unsigned int i,j;
15. for(i=0;i<=sec;i++)
16. for(j=0;j<=10;j++)
17. {
18. timer();
19. }
20. }
21. void disp(unsigned int a)
22. {
23. int j;
24. unsigned int i[]={0XC0,0XF9,0XA4, 0XB0,

0X99, 0X92,0X82, 0XF8,0X80,0X98};
25. for(j=a;j>=0;j--)
26. {
27. P1=i[j];
28. delay(1);
29. }
30. }
31. void main()
32. {
33. while(1)
34. {
35. P2=0x87;
36. P3=0xFF;
37. disp(9);
38. P3=0x30;
39. disp(2);
40. P2=0x4b;
41. P3=0xFF;
42. disp(9);
43. P3=0x90;
44. disp(2);
45. P2=0x2D;
46. P3=0xFF;
47. disp(9);
48. P3=0xC0;
49. disp(2);
50. P2=0x1E;
51. P3=0xFF;
52. disp(9);
53. P3=0x60;

Bello and Olubummo: Simplified traffic lights using embedded controller

AJMS/Jul-Sep-2019/Vol 3/Issue 3 55

54. disp(2);
55. }
56. }

EXPERIMENTAL RESULTS AND
DISCUSSION

In this section, we present the application
simplified traffic light. Microprocessor and its
various electronic components used in developing
the traffic light were diagrammatically illustrated
and discussed. A light-emitting diode (LED), a
semiconductor light source was used in carrying
out the experiment [Figure 2]. The color of
the light is determined by the energy gap of
the semiconductor. When a LED is forward
biased, electrons are able to recombine with
electron holes within the device, releasing
energy in the form of photons. This effect is
called electroluminescence (EL). EL is an
optical and electrical phenomenon, in which a
material emits light in response to the passage
of an electric current or to a strong electric field.
The wavelength of the light emitted, and thus,
its color depends on the band gap energy of the
materials forming the p-n junction. The materials
used for the LED have a direct band gap with
energies corresponding to near-infrared, visible,
or near-ultraviolet light.

Seven-segment display

A seven-segment display is an electronic display
device for displaying decimal numerals. A seven-
segment display is composed of seven elements.
Individually on or off, they can be combined to
produce simplified representations of the Arabic
numerals.
The set values and the selected time intervals are
shown on the seven-segment display [Figure 3].
There are two types of displays available. One
is common anode type display and the other is
common cathode type display. In common cathode
type display, all the cathodes of the segments are
tied together and connected to ground [Figure 4].
The supply will be given to the required segment
from the decoder or driver.
In common anode type display, the anodes of
all the segments are tied together and connected
to supply and the required segments will be
connected to ground from the decoder or driver
[Figure 5].

Port 1 is used for the seven-segment data. The
seven segments are arranged as a rectangle of two
vertical segments on each side with one horizontal
segment on the top, middle, and bottom. In
addition, the seventh segment bisects the rectangle

Figure 2: Traffic light application using light-emitting diode

Figure 3: A seven-segment display

Figure 4: Cathode type display

Figure 5: Anode type display

Bello and Olubummo: Simplified traffic lights using embedded controller

AJMS/Jul-Sep-2019/Vol 3/Issue 3 56

horizontally. In a simple LED package, typically,
all of the cathodes (negative terminals) or all of
the anodes (positive terminals) of the segment
LEDs are connected together and brought out to
a common pin; this is referred to as a “common
cathode” or “common anode” device. Hence, a
seven-segment plus decimal point package will
only require nine pins.[2-5]

A single byte can encode the full state of a
seven-segment display. The most popular bit
encodings are gfedcba and abcdefg – both
usually assume 0 is off and 1 is on [Table 1].
Figure 6 gives the hexadecimal encodings for
displaying the digits 0–9.
The timer of microcontroller is interfaced with
seven-segment display to display the delay of
light. The decoder enhances the capability of
accommodation for more number of seven-
segment displays with the same number of port
pins. The current-limiting resistor associated with
each segment limits the current at the cost of
illumination. The drop across each segment will
be 2 V approximately. The maximum current that
the segment can handle is 10 mA.
Current drawn by segment = (Supply voltage–
Drop across segment)/Resistance = (5 v–2 v)/
1k = 3 mA (1)
This proximity detector using an infrared detector
shown in Figure 5 can be used in various equipment
like alarm devices. The circuit primarily consists
of an infrared transmitter and an infrared receiver.
The transmitter section consists of a 555 timer
IC functioning in a stable mode. It is wired as
shown in Figure 7. The output from a stable is
fed to an infrared LED through resistor R4, which
limits its operating current. This circuit provides
a frequency output of 38 kHz at 50% duty cycle,
which is required for the infrared detector/receiver
module [Figure 8].
The receiver section comprises an infrared
receiver module, a 555 monostable multivibrator,
and an LED indicator. On reception of infrared
signals, 555 timer (mono) turns on and remains on
as long as infrared signals are received. When the
signals are interrupted, the mono goes off after a
few seconds (period = 1.1 R7 × C6) depending
on the value of R7–C6 combination. Thus, if
R7 = 470 kΩ and C6 = 4.7 μF, the mono period
will be around 2.5 s.[6,7]

Both the transmitter and the receiver parts can
be mounted on a single breadboard or printed
circuit board. The infrared receiver [Figure 9]
must be placed behind the infrared LED to avoid

false indication due to infrared leakage. An object
moving nearby actually reflects the infrared rays
emitted by the infrared LED.
The infrared receiver has a sensitivity angle (lobe)
of 0–60°, hence, when the reflected IR ray is sensed,
the mono in the receiver part is triggered. The
output from the mono may be used in any desired
fashion. For example, it can be used to turn on a

Figure 6: A seven-segment display

Figure 7: Serial interrupt example

Figure 8: A proximity detector using an infrared detector

Table 1: Hexadecimal reference for seven segments LED
light on/off functions
Digit gfedcba abcdefg a b c d e f g
0 0X3F 0X7E On On On On On On Off

1 0X06 0X30 Off On On Off Off Off Off

2 0X5B 0X6D On On Off On On Off On

3 0X4F 0X79 On On On On Off Off On

4 0X66 0X33 Off On On Off Off On On

5 0X6D 0X5B On Off On On Off On On

6 0X7D 0X5F On Off On On On On On

7 0X07 0X70 On On On Off Off Off Off

8 0X7F 0X7F On On On On On On On

9 0X6F 0X7B On On On On Off On On

Bello and Olubummo: Simplified traffic lights using embedded controller

AJMS/Jul-Sep-2019/Vol 3/Issue 3 57

light when a person comes nearby by energizing a
relay. The light would automatically turn off after
sometime as the person moves away and the mono
pulse period is over. The sensitivity of the detector
depends on current-limiting resistor R4 in series
with the infrared LED. Range is approximately
40 cm. For 20-ohm value of R4, the object at 25 cm
can be sensed, while for 30-ohm value of R4, the
sensing range reduces by 22.5 cm.

CONCLUSION

This article has exposed the use of microprocessor
and various electronic components used in
developing an embedded system found in traffic
lights. We studied the application of 8051
microcontroller to traffic lights. The basic 8051
has two on-chip timers [Figure 10] that can be
used for timing durations or for counting external
events. Interval timing allows the programmer to
perform operations at specific instants in time.

For example, in our LED flashing program, the
LED was turned on for a specific length of time
and then turned off for a specific length of time.
We achieved this through the use of time delays.
Since the microcontroller operates at a specific
frequency, we could work out exactly how many
iterations of the time delay were needed to give us
the desired delay. However, this is cumbersome
and prone to error. Moreover, there is another
disadvantage; the central processing unit (CPU) is
occupied, stepping through the loops. If we use
the on-chip timers, the CPU could be off doing
something more useful while the timers take on
the menial task of keeping track of time.
For the control and program of the serial port of
the microcontroller in a given sequence, we left
that as future work.

REFERENCES

1. Mazidi MA, Mazidi JG, McKinlay RD. The 8051
Microcontroller and Embedded Systems: Using

Figure 9: IR receiver circuit

Figure 10: 8051 MDE trainer board architecture descriptions

Bello and Olubummo: Simplified traffic lights using embedded controller

AJMS/Jul-Sep-2019/Vol 3/Issue 3 58

Assembly and C. Vol. 626. Upper Saddle River, NJ:
Pearson/Prentice Hall; 2006.

2. Ayala KJ. The 8051 Microcontroller. San Francisco,
CA: Cengage Learning; 2004.

3. Singh BP, Singh R. Advanced Microprocessors and
Microcontrollers. New Delhi: New Age International;
2008.

4. Yashwant K. Let us C. Array and Pointers. 7th ed. BPB

Publication; 1999.
5. Mano MM. Digital Design. United States: EBSCO

Publishing, Inc.; 2002.
6. Deshmukh AV. Microcontrollers: Theory and

Applications. New York: Tata McGraw-Hill Education;
2005.

7. Predko M. Programming and Customizing the 8051
Microcontroller. New York: McGraw-Hill, Inc.; 1999.

