
www.ajms.com  1

ISSN 2581-3463

REVIEW ARTICLE

On Review of the Cluster Point of a Set in a Topological Space
Eziokwu C. Emmanuel

Department of Mathematics, Michael Okpara University of Agriculture, Umudike, Abia, Nigeria

Received: 01-07-2019; Revised: 10-09-2019; Accepted: 18-10-2019

ABSTRACT
If X be a topological space and A subspace of X, then a point x E X is said to be a cluster point of A 
if every open ball centered at x contains at least one point of A different from X. In the preliminary 
sections, review of the interior of the set X was discussed before the major work of section three was 
implemented.
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INTRODUCTION

The word “set” in this context is used to denote 
the collection of well-defined object, for example, 
a set of books or set of student and so on. Here, 
let our set be denoted by the capital A and the 
numbers of the set by any small letters of the 
alphabet. Hence, the x є A, we say A is a subset of 
B if every element of A ⊂ B while A ⊆ B is used 
for proper subsets.
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Definition 1.1

A subset A of a topological space X is said to be 
closed if the set X-A is open, for example, the 
subset [a,b] of R is closed because it is compliment 
R a b a b−[ ] = −∞ ∪ +∞( ), ( , ) is open.[1]

Theorem 1.1

Let X be a topological space. Then, the following 
conditions hold:
1. Ø and X are closed
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2. Arbitrary intersections of closed sets are 
closed

3. Finite unions of closed sets are closed.[2]

Theorem 1.2

Let Y be a subspace of X. Then, a set A is closed 
in Y if and only if it equals the intersection of a 
closed set of X with Y.[3]

Theorem 1.3

Let Y be a subspace of X. If A is closed in Y and 
Y is closed in X, then A is closed in X. Proof 
to above three equations is in JamesMonks 
p. 94-95.[4]

CLOSURE AND INTERIOR OF A SET

Given a subset A of a topological space X, 
the interior of A is defined as the union of all 
open sets contained in A and the closure of A 
is defined as the intersection of all closed sets 
containing A. 
The interior of A is donated by Int A  and the closure 
of A is denoted by CL A  or by Ā ; obviously, Int 
A is an open set and Ā is a X closed set. Therefore, 
Int A ⊂ A ⊂ Ā
If A is open, A = Int A  while if A is closed A = Ā 
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Theorem 2.1

Let Y be a subspace of X and let A be a subset of Y. 
The closure of A in Y equals A Y . [5]

Theorem 2.2

Let A be a subset of the topological space X.
a) Then, X ∈ Ā  if and only if every open set U is 

containing x interests A.
b) Supposing the topology of X is given by a 

basis theory x ∈ Ā  if and only if every basis 
element B containing x interests A.[6,7]

Proof

Consider the statement (a), it is a statement of the 
form P ⇔ Q. Let us transform each implication to 
its contrapositive, thereby obtaining the logically 
equivalent statement (not P) ⇔ (not Q). Written 
out it is the following:
X ∉ Ā ∆ there exists an open set U containing x 
that does not interest A.
In this form, our theory is easy to prove. If x is not in 
Ā, the set U= x−Ā is an open set containing x that does 
not interest A as desired. Conversely, if there exist an 
open set U containing x that does not intersect A, then 
X−U is a closed set. By definition of the must contain 
Ā, the set X−U must contain A; therefore, X cannot be 
in Ā. Statement (b) follows readily. If every open set 
containing x interests A so does every basis element B 
containing x, because B is an open set.
Conversely, if every basis element containing x 
interest A so does every open set U containing x 
because U contains a basis element that contains 
x. Hence, U is an open set containing x, i.e. U  is a 
neighborhood of x.
Therefore, if A is a subset of the topological space 
X, then x ∈ Ā if and only if every neighborhood of 
x intersects A.

CLUSTER POINT (LIMITED POINT 
OR ACCUMULATION POINT) OF 
THE SET A 

This is another way of defining the closure of a 
set.
Definition 3.1
Let X be a topological space and A be a subspace of 
X. A point x ∈X (not necessary in A) is said to be a 
cluster point or a limit point or an a accumulation 
point of A if every open ball centered at x contains 

at least one point of A different from x (i.e., x is 
a limit point of A if Br(x) − {x} A≠ 0  for real 
number (r>0).[3]

Equivalent definition

If A is a subset of a topological space X and if 
x is a point of X, we say that x is a limit point 
(or cluster point or accumulation point of A if 
every neighborhood of x intersects A in some 
point other than x itself. Alternatively, x is a limit 
point of A if it belongs to the closure of A − {x}. 

Another alternative definition

When X = R and A ⊆ X = R, we say that x is a limit 
point of R if ∀ > − + ≠  0 0, ( , ) { }x x A x∆

Definition 3.2

The set of all limit point of A denoted by A′ is 
called the derived set of A.[7]

Definition 3.3

A subset of A of a metric space X is said to be 
closed if it contains all its limit points.[4]

Theorem 3.1

Let A be a subset of the topological space X and let 
A′ be the point of A, the A A A= ∪ '

Proof

If x is in A′, every neighborhood of x intersects 
A (in a point different from X). Therefore, x ∈ 
Ā . Hence, A′ ⊂ Ā. Since by definition A⊂ Ā, it 
follows that  A ∪ A′ ⊂ Ā to demonstrate the reverse 
inclusion we let x be a point of Ā and show that  x 
∈ A ∪ A′ supposed that x does not lie in A.
Since, x ∈ A, we know that every neighborhood U 
of x intersects A in a point different from x. Then,  
x ∈ Ā so that x ∈ A ∪ A′ , as desired.

Theorem 3.2

Let x ∈ R and A  R .
I. If x has a neighborhood which only contains 

finitely many members of A, then x cannot be 
a limit point of A.
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II. If x is a limit point of A, then any neighborhood 
of x contains infinitely many members of A.[2]

Proof I

Let U be a neighborhood of x which contains only a 
finite number of point A that is UA  is finite. Suppose 
U  A {x}=[y1, y2,..., yn] . We show that there exists 
 0 such that (x−, x+)  U  does not contain 
any member of A\ {x} . Since both  x − , x+  and 
U neighborhood of x so is their intersection.
This will prove that there is a neighborhood of x 
containing no element of  A\ {x} hence proving x is 
not a limit point of A. Let = min {|x − y1|,|x − y2|,...,|x 
− yn|}  since x is not equal to yi , 0. Then, (x − , x 
+ ) contains no point of A other than x, thus proving 
our claim. Proof of II follows immediately from I.

Corollary 3.3 

No finite set can have a limit point.

Proof

Follows immediately from Theorem 2.2.

Theorem 3.4

Let A  R , then
i. A ∪ L (A) = Ā = A ∪ A 
ii. L (A) ∪ L (B) = L (A ∪ B), i.e., A′ ∪ B′ = (A ∪ B)′ 
iii.  L (A)  is closed, i.e. A′ is closed.
iv. If U is open, then L (U) = U , i.e., U′ = U 
 (i) above was clearly captured in the proof of 

Theorem 2.1 while (ii) and (iv) are follow ups 
of already proved theorems above.
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