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ABSTRACT
One of the most powerful techniques available for studying functions defined by differential equations is 
to produce power series expansions of their solutions when such expansions exist. This is the technique 
I now investigated, in particular, its feasibility in the solution of an engineering problem known as the 
problem of strut of variable moment of inertia. In this work, I explored the basic theory of the Bessel’s 
function and its power series solution. Then, a model of the problem of strut of variable moment of 
inertia was developed into a differential equation of the Bessel’s form, and finally, the Bessel’s equation 
so formed was solved and result obtained.

Key words: Bessel’s equations, power series singular point, regular points, strut of variable moment of 
inertion 
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INTRODUCTION

The heart of this work is centered on the Bessel’s equations of the ordinary differential equation, the 
solution of which I approached only through the power series method. Hence, I discussed the basics of the 
theory of power series solutions of ordinary differential equations and Bessel’s equation in this section.

Basics on the power series

We now begin by recalling some basic facts about power series.
I. An expression Bayin[1] of the form
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In which, xn  is also a constant, is called a power series in x x− 0, since Equation (1.2) can always be 
transformed into Equation (1.1) by the change of variable

 
u x x= − 0. It is important to note that,

II. A power series Bayin[2] in
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is a convergent series of real numbers, in which case Equation (1.3) is called the sum of the series at x1 . 
Otherwise, the series is said to diverge at x1 .

Every power series in x  obviously converges when x = 0, and its sum at that point is a0 , the constant 
term of the series. More generally, every power series has an associated radius of convergence 
R R,. ,where0 ≤ ≤ ∞  which is characterized by the property that the series converges when x R< and 
diverges when x R> . In other words,
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converges inside an interval R centered at 0 and diverges outside that interval. (Convergence or divergence 
at the endpoint of the interval must be determined on a case-by-case basis by examining the particular 
series in question.)
III. The radius of convergence of many power series Bentely and Cooke[3] can be found by means of the 

ratio test:
If
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converges when L <1  and diverges when L >1.

This test immediately implies, for instance, that the series
2
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converges for x <1 and diverges for x >1 . Hence, its radius of convergence is 1.

IV. A power series Brand[4] in x with a positive radius of convergence R defines a function f in the interval 
x R<  by the rule.
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This function is continuous and has derivatives of all orders everywhere in the interval. Moreover, these 
derivatives can be found by differentiating Equation (1.4) term by term.
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And so on.
V. A function f that can be represented by a convergent power series Brauer and Nohel[5] of the form
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for all x in an open interval I centered at x0 is said to be analytic at x0. In this case, the coefficients of the 
series are uniquely determined by the formula
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Where f xn( )
( )0  denotes the nth derivative of f evaluated at x0. In particular, if 

( )  0 for all  in  then 0 for all nf x x I a n= = . Thus, if
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for all x in I. We shall use these facts repeatedly, though usually without explicit mention, in our work 
with differential equations.
It turns out that if f is analytic at x0, it is actually analytic at each point in its interval of convergence about 
x0. Thus, it is customary to speak of functions as being analytic on an interval, the phrase “analytic at x0” 
being used only to direct attention to the point about which the series is expanded.
VI. Every polynomial in one variable Coddington and Levinson[6] is analytic on the entire real line, since
a a x a xk

k
0 1+ +…+

can be viewed as a power series in x with 0 for na n k= > . In fact, the notion of an analytic function can 
be seen as a generalization of the notion of a polynomial, and these two classes of functions have many 
properties in common. For instance, both are vector spaces n which addition and scalar multiplication 
are performed term by term, and in both there is a well-defined multiplication. Thus, if f and g are 
analytic on an open interval I ,  then so are f g f+ ∝,  for any scalar , and fg∝ . Moreover, if
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Then, fg  is computed according to the formula
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VII.  We Coddington[7] have already observed that polynomials are analytic on the entire real line. So 
are the functions e x xx , sin cos ,and  and their power series expansions about x = 0  are
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These series are encountered so frequently that it is well worth the effort to remember them.
Rational function (quotients of polynomials) is also analytic wherever they are defined. Thus,
p x
q x

( )

( )
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Is analytic at x = 0  when p qand  are polynomials and ( ) 0 0.q ≠
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 (1.6)

is a “dummy variable” an can be changed whenever it is convenient to do so. For instance, if we replace
n nby +1�in Equation (1.6), we obtain
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This substitution has the effect of changing the index of summation in the original series by one. In our 
work with differential equations, we shall use this maneuver to rewrite the formulas for the first and 
second derivatives of Equation (1.6) as
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Series solution about an ordinary point

We now resume the study of the equation

p x d y
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q x dy
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r x y( ) + ( ) + ( ) =
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2
0 (1.7)

and impose the restriction that p q r, , and  be analytic on an open interval I of the x − axis. As we shall see, 
the behavior of the solution of Equation (1.7) in a neighborhood of a point x I0 in

 
depends in large 

measure on whether p x0 0( ) = �
 
or not. In the former case

 
0   in  x I

 
depends in large measure on whether 

p x0 0( ) =
 
or not. In the former case, x0 �  

is said to be a singular point for the equation; in the later case, 
it is said to be an ordinary point. We begin by considering solution about ordinary points, the easier of 
the two cases.

When ( )0  0p x ≠ , the continuity of p  implies the existence of an interval about x0 � in which ( ) 0p x ≠ . 
Thus, if we restrict our attention to that interval. Equation (1.7) can be rewritten Hurewiez[8] as.
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Were ( ) ( ) ( ) ( )  / and  ( ) / ( )P x q x p x Q x r x p x= = . In this form, x0  is an ordinary point for the equation if 
P Qand are analytic in an interval about x0. The following theorem, which we state without proof, 
describes the solution of Equation (1.8) in this case.

Theorem 1.1 Ince[9] if the coefficients P Qand in the equation
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are analytic at x0  and have power series expansions that converge in the interval verify x x R− <0 , then 
every solution of the equation is analytic at

 
x0

 
and its power series expansion also converges when 

x x R− <0 .
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Theorem (1.1) states that about x0, the solution of
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where they a0 are constants.
Example 2 (Baver and Nohel (1967)) find the general solution of
y xy y" '+ + = 0 (1.13)

Solution: Theorem 1.1 again guarantees that the solution of this equation has power series expansions 
of the form
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That converges for all values of x. We now substitute this series and its first two derivatives in the 
differential equation to obtain.
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Next, we shift the index of summation in the first series and collect like terms to obtain first
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Where a a0 1and  are arbitrary constants, and the equation has been “solved.”
In addition, the power series expansion of a solution of a differential equation often reveals properties of 
the solution that would be exceedingly difficult to discover by other means. For this reason, an analysis 
of the functions defined by a differential equation usually begins with an attempt to produce a power 
series expansion of those functions. At the same time, however, we should point out that power series 



Emmanuel and Onyinyechi: Power series solution of bessel problems to the problems

AJMS/Oct-Dec-2019/Vol 3/Issue 4 20

solutions are not always as easy to come by as the examples we have given might suggest. The difficulty 
arises in connection with the recurrence relation which can easily be too complicated to yield a formula 
for the coefficients of the series. Examples are given in the exercises that follow.

Singular points

We (Kamaziha and Prudunkov (2001)) recall that x0  is a singular point for the equation
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q x dy
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r x y( ) + ( ) + ( ) =
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2
0 (1.14)

If p q r, �and are analytic at x p x0 0 0and ( ) = . In general, there is very little that can be said about the nature
 

of the solution of a differential equation about a singular point. There is, however, one important 
exception, namely, the case where

 
x0

 
is a “regular” singular point in the sense of the following definition.
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Where P Qand � are analytic at x0 . A singular point that is not regular is said to be irregular. In the 
following discussion, we shall limit ourselves to equations that have a regular singular point at the origin 
in which case Equation (1.15) becomes

2  "  ( ) '  ( ) 0x y xP x y Q x y+ + =  (1.16)
As we observed earlier, this limitation involves no loss of generality since the change of variable u x x= − 0 
will move a singularity form x0 0to .

Example 2: Kamazina and Prudinkov[10] find the general solution of
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Solution: We begin by considering the interval ∝< 0� where we seek a solution of the form
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The preceding expression can be rewritten as
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Equation (1.18) determines the admissible value of v  for this problem as 
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finally setting, a0 1=  we conclude that each of the following series formally satisfies Equation (1.13).
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At this point, we have proved that if
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With a0 1=  then, this solution must be one of the two series found above. As yet, however, we have no 
guarantee that either of these series actually is a solution of the given equation, since it is conceivable 
that both of them might diverge for all

 
x > 0 . This is what we meant a moment ago when we said that 

these series “formally” satisfy Equation (1.13). Fortunately, an easy computation by the ratio test disposes 
of this difficulty. Both series converge for all

 
x y y> 0 1 2,andsince and  are also linearly independent in  

C (0, ∞) the general solution of Equation (1.13) for
 
x > 0� is

y c y c y= +1 1 2 2 ,
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Where c c1 2and  are arbitrary constants?

Finally, to remove the restriction on the interval, we observe that the preceding argument still holds if we 
replace x xv v

by throughout; that is by ( )− <x xv for 0 . Thus, the general solution of Equation (1.13) on 
any interval not containing the origin is

( ) ( )
1/2

1 2
0 0

(2 ) 1  ( 1) .
! 1.3 .5 2 1

n n
n n

n n

x xy c x c x
n n

∞ ∞

= =

= − + −
… +∑ ∑
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Solution about a regular singular point

In this section, we Kaplan[11] shall indicate how the method of Frobenius can always be used to obtain at 
least one solution of

2 " ( ) '  ( ) 0x y xP x y Q X y+ + =  (1.20)
About x = 0�  whenever P Qand  are analytic at that point. Once again we begin by letting x  be positive, 
in which case we seek a solution of Equation (1.20) of the form
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Moreover, Equation (1.21) yields
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However, since P Qand  are analytic at x = 0�  it follows that
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Where both series converge in an interval x R R< >, 0. Thus, Equation (1.22) can be rewritten as
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Hence, Equation (1.22) will satisfy Equation (1.21) formally in the interval 0 < <x R �  if
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The first of these relationships is known as the indicial equation associated with Equation (1.20) its 
roots determine the admissible values of v in Equation (1.21). Notice that sincep q0 0and  are the constant 
terms in the series expansions of

 
P Qand

 
Equation (1.24) may be rewritten as.
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Moreover, since the choice of v1  implies that { n v n+( ) ≠ >1 0 0for we can solve Equation (1.27) for an  to obtain
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This relation determines all the a nn from =1  onward in terms of a0  and yields a formal solution of 
Equation (1.21) in the interval

 
0 < <x R. Moreover, if
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v  is replaced by

 
x v  throughout these computations, 

we obtain a formal solution in the interval
 
– 0R x< > . Finally, the resulting series is known to converge 
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and is, therefore, a solution of Equation (1.13).*

To complete the discussion, we Kreyszig[12] must now find a second solution of Equation (1.23) that is 
linearly independent of the one just obtained. We attempt to repeat the preceding argument using the 
second root v2  of the indicial equation. If v v2 1= , we get nothing new of course new. However, if 2 1v v≠

 
Equation (1.27) becomes

I n v a j v p q an
j

n

n j n j j+( ) + +( ) +  =
=

−

− −∑2

0

1

0.

A can again be solved for 
an  provided

I n v+( ) ≠2 0

For all n < 0 . However, when n I n v> +( ) =0 02, � if and only if n v v+ =2 1  that is if and only if v v n1 2− = . 
Thus, our technique will yield a second solution of Equation (1.21) for 0 < <x R  whenever the roots of 

the indicial equation
 
I v( ) = 0

 
do not differ by an integer. In this case, it is easy to show that the (particular) 
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solution y y1 2and  obtained by setting a0 1=  in these series are linearly independent and hence that the 
general solution of Equation (1.27) about the origin is

1 1 2 2  y c y c y+= +

Where c1 and c2 are arbitrary constants? This, for instance, is what happened in the example in the 
preceding section. In the next section, we shall discuss the so-called exceptional cases in which v2–v1 is 
an integer.

Solution about a regular singular point: The exception cases

To complete the discussion of solution about a regular singular point, it remains to consider the case 
where v v1 2and  the roots of the indicial equation differ by an integer. Our experience with the Euler 
equation suggests that a solution involving a logarithmic term should arise when

 
v v1 2=  and, as we shall 

see, this can also happen when
 

1 2v v≠ . The following theorem gives a complete description of the 
situation, both for the case already treated and for each of the exceptional cases.

Theorem 1.4 Leighton[13] let
2 "  ( ) ' ( ) 0x y xP x y Q x y    (1.28)

Be a second-order homogeneous linear differential equation whose coefficients are analytic in the interval  
1 2. 0, and let  and x R R v v< >  be the roots of the equation

( ) ( ) ( ) 1  0 0 0, v v P v Q− + + =

Where v v1 2and  are labeled so that ( )1 2 ( )Re v Re v≥ . Then, Equation (1.28) has two linearly independent 
solutions y y1 2and valid for 0 < <x R , whose form depends on

 
v v1 2and in the following way.

Case 1.
 
v v1 2−

 not an integer.

1

2

1 0
0 

2 0
0

 ,       0,

,  0,

v n
n

n

v n
n

n

y x a x a

y x b x b

∞

=

∞

=

= ≠

= ≠

∑

∑
Case 2. v v v1 2= = .

( )

1 0
0 

2 1
1

 ,       0,

   in   .

v n
n

n

v n
n

n

y x a x a

y x b x y x x

∞

=

∞

=

= ≠

= +

∑

∑

Case 3. v v a1 2−  positive integer,

( ) ( )

1

2

1 0
0 

2 1 0
0

 ,       0,

  in  0.   fixed constant.*

v n
n

n

v n
n

n

y x a x a

y x b x cy x x b c a

∞

=

∞

=

= ≠

= − ≠

∑

∑
Note that, when c = 0� does not contain a logarithmic term.
Finally, the values of the coefficients in each of these series are uniquely determined up to an arbitrary 
constant and can be found directly from the differential equation by the method of undetermined 
coefficients.
We shall not attempt to prove this theorem but shall instead present an argument that suggests why a 
solution involving a logarithmic term arises when v v1 2= . The argument goes as follows. As before, we 
begin by attempting to determine the an in
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x a xv

n
n
n

=

∞

∑
0

So that the resulting expression satisfies Equation (1. 28) for 0 < <x R . This time, however, we also 
regard v as a variable and set

( )
0

 , v n
n

n

y x v x a x
∞

=

= ∑  (1.29)
Moreover, we assume from the outset that a0 1= . Then, if L  denotes the linear differential operator 

( )2 2   ( )x D xP x D Q x+ + , our earlier discussion implies that.

( ) ( ) ( ) ( )
1

1 0

 ,    , 
n

v v n
n n j n j j

n j

Ly x v I v x x I n v a j v p q a x
∞ −

− −
= =

   = + + + + +    
∑ ∑  (1.30)

Where they  andn j n jp q− −  are the coefficients of the power series expansions of P Qand  about the origin. 
We now use the recurrence relation.

( ) ( )
1

0
  0 

n

n n j n j j
j

I n v a j v p q a
−

− −
=

 + + + + = ∑
To determine a a1 2, ... in terms of v  so that every term but the first on the right-hand side of Equation 
(1.30) vanishes. If the resulting expression is denoted by a vn ( )

 
and substituted in Equation (1.29) we 

obtain a function

( )1
0

, 1  ( ) v n
n

n

y x v x a v x
∞

=

 
= + 

 
∑  (1.31)

With the property that
Ly I v xv1 = ( ) . (1.32)

However, v1  is a double root of the equation I v( ) = 0. Therefore, I v v v( ) = −( )1

2 and

Ly v v xv1 1

2= −( ) .  (1.33)

Thus, Ly1 0=  when v v= 1, and the expression y x v1 1( , ) formally satisfies the equation Ly = 0 . This, of 
course, agrees with our earlier results.
The idea behind obtaining the second solution, in this case, originates with the observation that when 
Equation (1.33) is differentiated with respect to v  its right-hand side still vanishes when v v= 1 . Indeed,

( ) ( )2
1 1 1 (  )

ˆ
ˆ

[2  In ]vc v v x v v v v x
cv

− − + −

However, since

( )1 1
ˆ ˆ
ˆ ˆ

,  ( , ) ,c cLy x v L y x v
cv cv

   =    

Equation (1.33) implies that

1 ( , )
ˆ

0 ĉL y x v
cv
  =  

When v v= 1 thus, if we differentiate Equation (1.31) term by term with respect to v  and then set v v= 1 
the resulting expression will also formally satisfy the equation

 
Ly x R= < <0 0when . Denoting this 

expression by y x v2 1( , ) we have

( )
11 1 1  ,   ( , ) v vy x v y x v

v =

∂=
∂

( ) ( )1
1 1 1

1
 '  ,  In  v n

n
n

x a v x y x v x
∞

=

= +∑
This is precisely the form of the second solution given in the statement of theorem 4.1 under Case 2.
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BESSEL’S EQUATION

The differential equation
x y xy x p y2 2 2 0" ' ( )+ + − =  (2.1)

Where 
p

 is a non-negative real number, is known as Bessel’s equation of order p . It is one of the most 
important differentials in applied mathematics, and as a consequence its solution, which is called Bessel 
function, has been intensively studied. In this section and the next, we shall derive some of the more 
elementary properties of these function, including their expansions about the regular singular point at 
x = 0�. For simplicity, we shall confine our attention to the nonnegative

 
x − axis. The indicial associated 

with Equation (2.1) is
v p2 2 0− =

Which has the roots ± � p . Thus, Bessel’s equation of order p  has a solution of the form

y x a xp

k
k
k=

=

∞

∑
0

,

With 0 0.*a ≠  to evaluate the ak  in this series, we Rabinstein (1972) observe that

( )

( )( )

( )( )

2 2 2
2 

2 0

0 

2

0 

  

 1

 "  1 .

p k p k
k k

k k

p k
k

k

p k
k

k

x p y x a x x p a x

xy x k p k p a x

x y x k p k p a x

∞ ∞

−
= =

∞

=

∞

=

− = −

= + + −

= + + −

∑ ∑

∑

∑

′

When these expressions are substitution in Bessel’s equation we find that

k
k
k

k
k

kk p k p k p p a x a x
=

∞

=

∞

−∑ ∑+( ) + −( ) + +( ) −  + =
0

2

2

21 0

Because it is traditional to use the letter n  rather than p  when Bessel’s equation is of integral order, we 
shall use k  as the index of summation throughout this discussion.
Or

2 1 2 01

2

2p a x k p k a a x
k

k k
k+( ) + +( ) +  =

=

∞

−∑ .

From this follows that
2

1 0  and   ,      2.
(2 )

k
k

aa a k
k p k

−= = − ≥
+

Thus,

a a a1 3 5 0= = =…= ,

While

( )

0
2

0
4

 ,                                                                
2(2 2)

,                                            
2 . 4 . 2 2 (2   4)

                                                   

aa
p

aa
p p

=−
+

=
+ +



( )( )( )

( )( )

0
2

0
2

                                              

( 1)
2 .4 2 2 2 2 4 (2 2 )

( 1)
2  ! 1 2 ( )

k
k

k
k

aa
k p p p k

a
k p p p k

= −
… + + … +

= −
+ + … +
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Hence,

( )( )
2

0 2
0

( 1) ,
2  ! 1 2 ( )

k k p

k
k

xy a
k p p p k

+∞

=

−
=

+ + … +∑  (2.4)

Where, 0  0a ≠  is an arbitrary constant? From this point onward, the discussion divides into cases that 
depend on the value of p

Bessel function of the first kind

1. p n= ,  an integer. In this case, Equation (2.2) assumes a particularly simple form when we set.

a
nn0

1

2
=

!
 (2.3)

The corresponding solution of Bessel’s equation is denoted by J xn ( ) and is called the Bessel function of 
order n  of the first kind:

J x
k n k

x
n

k

k k n

( ) = −
+( )









=

∞ +

∑
0

2
1

2

( )

! !
 (2.4)

In particular, Leighton[13] the series expansion of J0 , with J1  is the most important of the Bessel function is

( )
2

0 2
0

2 2 6

2 2 2 2 2 2

( 1)
( !) 2

1    
2 2  . 4 2  . 4  . 6

kk

k

xJ x
k

x x x

∞

=

−  =  
 

= − + − +…

∑
 (2.5)

Graphs J J J0 1 2. .and  are shown in Figure 1 note the oscillatory behavior of these functions. This 
phenomenon will be discussed in some detail in the next chapter.
2. p not an integer; the gamma function. To obtain a formula for J pp when � is not an integer that is 

analogous to the formula, for Jn ,  we must generalize the notion of the factorial function to include 
nonintegral values of its argument. Such a generalization was originally discovered by Euler and is 
known as the gamma function. It is defined by the improper integral Lizorkin[14].

( ) 1 1

0

  ,        0,pI p t e dt p
∞

− −= >∫  (2.6)

Which converges for all p > 0.

The fact that Γ p( )  generalizes the factorial function is a consequence of the functional equation,

Γ Γp p p+( ) = ( )1 .  (2.7)

Figure 1: Illustrating Interlacing of the zeros of the J-Bessel  Functions
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To prove Equation (2.7), we use integration by parts to evaluate Γ p +( )1  as follows:

( )

( )

1

0

1 1 1
0

0

1

0

1  

  

 

.

p

p p

p t

p t e dt

t e p t e dt

p t e dt

p p

∞
−

∞
− ∞ − −

∞
− −

+ =

= − +

=

Γ

∫

∫

∫

Γ

Thus, since

Γ 1 1
0

1( ) = =
∞

−∫e dt

We have

Γ Γ
Γ Γ
Γ Γ

2 1 1 1

3 2 2 2 1

4 3 3 3 2 1

( ) = ( ) =
( ) = ( ) =
( ) = ( ) =

,

. ,

. . ,

Moreover, in general

Γ n n n+( ) =1 !, .a nonnegativeinteger

This, of course, is what we wished to show. For future reference, we also note that

Γ Γ

Γ

p p p p k p p p k

p k

+( ) +( ) +( )… +( )  = +( ) +( ) +( )

= + +( )

1 1 2 2 2

1

[ .. ]

  (2.8)

Next, we observe that when Equation (1.40) is rewritten as

Γ Γp p
p

( ) = +( )
,

1
 (2.9)

It can be used to assign a value to
 
Γ p( )

 

for nonintegral negative values of p . Indeed, Equation (2.9) can 
be used to define Γ Γp p p( ) − < < +for sine1 0 1, ( )

 

is already defined in that interval. Then continuing 
in the same fashion, Γ p( )

 

can be successively defined for

 

12 1 13 2< < − < < −p p, ,

 

and so forth.
Finally, it is easy to show that Γ( )p

 
is unbounded in the neighborhood of 0 and in neighborhood of every 

negative integer. More precisely,

( ) ( )
  0  0
lim  lim   ,
p p

p p
+ −→ →
Γ =+∞ Γ =−∞

With similar results about −1, −2,… A graph of the gamma function appears in Figure 2.
We Oliver and Maximau[15] now return to the discussion of Bessel’s equation, and to Equation (2.2) when 
p  is not an integer. This time we set.

a
pp0

1

2 1
=

+Γ( )
,

Moreover, use Equation (2.9) to obtain

J x
k k p

x
p

k

k k p

−
=

∞ −

=
−

+( ) − +






∑

0

2
1

1 1 2

( )

( )Γ Γ
 (2.10)
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Which is known as the Bessel function of order p  of the first kind? It is defined for all x  and reduces to 
our earlier formula for

 
J pn when  is a non-negative integer

 
n . To continue, we seek a second solution of 

Bessel’s equation of order p  that is linearly independent of J p . The case where
 

p
 
in not an integer is 

easy. We simply replace p pby −
 
in the series for J p  to obtain.

J x
k

x
p

k

k k p

−
=

∞ −

( ) = −
+( ) − +







∑

0

2
1

1 1 2

( )

( )Γ Γ k p
 (2.11)

It is not difficult to verify that J p−  is a solution of Bessel’s equation of order p  and that it is linearly 
independent of

 
J p

 
(See Exercise 1). Thus, when p  is not an integer the general solution of Bessel’s 

equation can be written in the form

1 2    p py c J c J−= +  (2.12)
Where  c c1 2and  are arbitrary constants? Note, however, that because of the term involving  x Jp

p
−

−( )in 2 11. ,  
is unbounded near the origin and is undefined at x = 0 . Thus, Equation (2.12) is a solution of Bessel’s 
equation only when x > 0.

Bessel’s function of the second kind
It is tempting to try to modify the dentition of J p−

 
so that when

 

p  is an integer
 
n

 

it will yield a solution 

of Bessel’s equation that is linearly independent of Jn  the most obvious way to try to do is to agree that.
J x J xn p n p− → −( ) = ( )lim  (2.13)

It is easy to show that this limit exists but Pontryagin[16] unfortunately it turns our that
J x J xn

n
n− ( ) = − ( )( )1  (2.14)

Thus J n−  is linearly dependent of Jn  and our attempt has failed. At this point, we could of course return 
to first principles and obtain the required solution using the method of undetermined coefficients as 
described under the exceptional case of theorem 1.4. However, the corresponding computation is rather 
complicated, and what is worse, they result in function that is not particularly well suited for computation. 
As a result, we need to find a different approach to this problem. Surprisingly enough, a simple variant 
of the maneuver that just failed with

 

J p−  will produce the solution we seek. In outline, the argument goes 
like. If p  is not an integer, then the function.

Y x
J x pn J x

pp
p p( ) = ( ) − −cos ( )

sin π
 (2.15)

Figure 2: Isometric plotting of  Bessel function of order p
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Is defined for all x > 0�  and being a linear combination of J Jp pand − is a solution of Bessel’s equation 
of order

 
p . The important facts about Yp  are that it has a limit as

 
p n→ ,� and that in the limit it is still 

a solution of Bessel’s equation. Thus, the function.
( )

 
 lim  ( )    0, 1 , 2,n np n

Y x Y x n
→

= =  (2.16)

Is a solution of Bessel’s equation of order n ? What is more it is linearly independent of Jn ? The function 
Yn  is known as the Bessel function of the second kind of order n.
The task of producing a series expansion for Jn  is complicated and involves results that would take us 
too far afield to develop here. The computation begins with the observation that Equation (2.15) assumes 
the indeterminate form 

0

0
when p n= , and hence that the limit in Equation (2.16) can be evaluated by 

(“Hopital”) rule. Thus,

Y x
p
J x

p
J xn p

n
p

p n

( ) = ∂
∂

( ) − −
∂
∂









−

=

1
1

π
( ) ( )  (2.17)

If the series for
 
J Jp pand −  is substituted in this expression, differentiated, and the reindexed with n  in 

place of p it can be shown Rabinstein[17] that.

( ) ( ) ( )

( )

21

0
0

2

1 1 1

1 !2 17
2 ! 2

1 1 1 12   
( !) 2 3 2

1 ( 1) 1 1 ,
! ! 2

k nn

n
k

n

k nk k k n

k j J

n kx xY x J x In
k

x
n

x
k n k j k

 

 



−−

=

+∞ =

= = =

− −   = + −      

   − + + +…+      

 −  − +     +  

∑

∑ ∑ ∑

Where 7 = 0.57721566 … =

 

lim /
n

n n
→∞

+ +…+ −





1

1

2
1 In  is Euler’s constant. In particular. When

 
n = 0.

Y x J x In x
k kk

n k

0 0

0

1

2

2

2
7

2 1
1

1

2

1( ) = ( ) +





 −

−
+ +…+






=

−

∑π π
( )

( !) 








x k

2

2

Graphs of Y Y0 1and  are shown in Figure 3.

Properties of bessel function
There is an almost endless list of formulas and identities that involve Bessel function. In this section, we 
shall establish a few of them.

Figure 3: Struve’s functions Ho(z) and H1(z)



Emmanuel and Onyinyechi: Power series solution of bessel problems to the problems

AJMS/Oct-Dec-2019/Vol 3/Issue 4 31

Recurrence relations
The Rabinstein[17] – various recurrence relation that involves Bessel function follows from the 
differentiation formulas
d
dx

x J x x J xp
p

p
p( )  = ( )−1

 (2.18)

Moreover,
d
dx

x J x x J xp
p

p
p

− −
−  = ( )( ) 1  (2.19)

To prove Equation (1.52), we multiply the series expansion of
 

J by xp
p� �

 
and differentiate:

( ) ( )

( )

( )
( )

2 2
 

0

2 2 1

0

2 2 1

0

1

( 1) 
1 ( 1) 2

( 1)  ( )                     
1 ( 1) 2

( 1) 
1 ( 1) 2

k pk
p

p
k

k pk

k

k pk
p

k
p

p

d d xx J x
dx dx k k p

k p x
k k p

xx
k k p

x J x

−∞

=

− −∞

=

− −∞

=

−

−    =     Γ + Γ + +

− +  =   Γ − Γ + +

−  =   Γ + Γ + +
=

∑

∑

∑

The proof of Equation (2.18) is similar.
When the derivatives appearing in Equations (2.18) and (2.19) are expanded, and the results are simplified 
we obtain

xJ pJ xJp p p' + = −1  (2.20)

and
xJ pJ xJp p p' − = − +1  (2.21)

The basic recurrence relations for the Bessel function follow at once from these results. By subtracting 
Equation (2.21) from (2.20), we obtain
2 1 1pJ xJ xJp p p′ = −− +

By adding Equation (2.20) to (2.21), we obtain
2 1 1J J Jp p p′ + −− +

Hence,

J p
x
J xJp p p+ −= −1 1

2  (2.22)

and

J J Jp p p' (= −− +
1

2
1 1

 (2.23)

Remake
Formulas Equation (2.19) through (2.22) also hold for the function Yp . Bessel function of half-integral 
order. When

 
p =

1

2
 Equation (2.15) becomes

J x
k k

x
k

k k

1 2

0

2 1 2
1

1
3

2

2
/

/
( )

( )

( ) = −

+( ) +









=

∞ +

∑
Γ Γ
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=
−( )

( ) +







=

∞

∑x x
k k

xp

k

k
k

2

1

2
3

2
0 2

2

kΓ Γ
.

However,
3 3 3 5 2 1    .
2 2 2 2 2

3 3.5 (2 1)             
2 2

3 .5 (2 1)          ,
2 2

k

k

kk

k

k

+     Γ + =Γ …          
… +   = Γ       

… + =   
Where the last step follows for the result in Exercise 2 of the preceding section. Hence,

( ) ( )

( ) ( )

2
1/2 k

0

2 2 1

0 0

12.  
2 2 k!3 .5 (2 1)

2 2( 1)  ( 1) ,
2 1 2 1 !

∞

=

+∞ ∞

= =

−
=

… +

= − = −
+ +

∑

∑ ∑

k
k

k

k k
k k

k k

xJ x x
k

x x x
k x k

π

π π

Moreover, we have proved that

J x
x

x1 2

2
/ sin( ) =

π
 (2.24)

A similar argument[17] reveals that

J x
x

x− ( ) =1 2

2
/ cos ,

π
 (2.25)

Moreover, it now follows from Equation (2.22) that ever Bessel function of the first kind of order
 
 

n n+
1

2
an integer, can be written as a finite sum of terms involving powers of x  and the sine or cosine. For 
instance,

Figure 4: Struts of variable moment of inertia
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J x
x
J x J x

x
x
x

x
x

x3 2 1 2 1 2

3 2 3
/ / /

sin cos
.( ) = ( ) − ( ) = −






π

sin

It can be shown that the function of half-integral order is the only Bessel function that can be expressed in 
closed form in terms of elementary function. Problems of type considered in this work are an application 
to strut of variable moment of inertia, as illustrated below.

APPLICATION TO STRUT OF VARIABLE MOMENT OF INERTIA
This can be found in towers for supporting electrical transmission line, crane jibs, aircraft spars, 
locomotive connecting, and coupling rods.
To derive the Bessel’s equation of struts of variable moment of inertia, if we take

 
l0  

as the moment of 
inertia at a point 0 about an this perpendicular to the plane of bending, at ( , )x y  to be
l l e ky l= −

0

/  (3.1)
Where k  is a constant?
The bending moment at ( , )x y  is

m p a x= −( )�  (3.2)

Moreover, the differential equation of flexure is

EI d x
dy

M= =
2

2   (3.3)

E is the modulus of elasticity. Substituting from Equations (3.1) and (3.2) into (3.3), yields
d x
dy

e
El

p x a
ky l2

2

0

0+ −( ) =
/

 (3.4)

With w x a b k l n p El= −( ) = =2 2

0/ /and  Equation (3.4) becomes

d w
dy

n e wby
2

2

2 2 0+ =  (3.5)

Writing V neby= �  then Equation (3.5) is transformed to the Bessel equation
d w
dv v

dw
dv

w
b

2

2 2

1
0+ + =  (3.6)

solving the Bessel’s equation above
Solution
d w
dv v

dw
dv

w
b

2

2 2

1
0+ + =

Recall the standard Bessel’s equation is

x y xy x m y2 11 1 2 2 0+ + −( ) =

Let y
d w
dv

y dw
dv

y w x v
b

11
2

2

1= = = =, , and

∴ + + =y
v
y

b
y11 1

2

1 1
0  (3.7)

y
v
y

b
y11 1

2

1 1
0 0+ + −




=

m = 0i.e.
 
The Bessel function or order m
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∴ + + −




=y

v
y

b
y11 1

2

1 1
0 0

putting y a x
n

n
n r=

=

∞
+∑

1

 (3.8)

where a0 1=  and applying Frobenius method

y n r a x
n n

n
n r1 = +( )

=

∞
+∑

�

( )( )11 2

 
1 n r

n
n n

y n r n r a x
∞

+ −

=

= + − +∑
Substitution into the equation, we have

( )( ) ( ) ( )2 1
2

   

1 11 0n r n r n r
n n n

n n n

n r n r a x n r a x n r a x
v b

∞ ∞ ∞
+ − + − +

= = =

+ − + + + + + =
∩ ∩ ∩
∑ ∑ ∑
Simplify, we have

( )( ) ( ) ( )2  1
2

   

1 11 0n r n r n r
n n n

n n n

n r n r a x n r a x n r a x
v b

∞ ∞ ∞
+ − + − +

= = =

+ − + + + + + =
∩ ∩ ∩
∑ ∑ ∑

( )( ) 2
22

  

11 0n r n r
n n

n n

n r n r a x a x
b

∞ ∞
+ − +

−
= =

+ − + + =
∩ ∩
∑ ∑  (3.9)

Equation to zero the coefficient of the lowest power of x n r n r( ) �+ + −( ) =2 1 0

We have r 2 0=  which has equal roots

i.e.r r1 2 0= = .

Thus, we have also

( ) �n r n r a r
b
a rn n+ + −( ) ( ) + ( ) =−

2

2 21
1

0

a r
b

a r
n r n r z

nn
n( ) = −

+ +( )
≥−1

2
2

2

2

( )

( )
,  (3.10)

To determine y x1 ( ) ,  we set r = 0 , then from Equation (3.3) to zero the coefficient of higher power of 
x  we obtain
1

0
2 2b
an− =

i.e. fora r1 0 0= =
Thus, from equation (40) we see that

3 5 7 2 1  0 na a a a += = …= =…=
Further

( ) 2
2 2

(0)10  , 2, 4, 6,8.     
( 1)

n
n

aa n
b n n

−−= = …
−

On letting n m= 2

( ) 2 2
2 2

(0)10  , 1, 2,3      
(2 1)
m

m
aa m

b m m
−−= = …

−
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Thus, a
b
a

b
a

2 2

0

2 2

0

2
0

1

2

1

2
( ) = − =

−

a
b
a

b
a

b
a

4 2

4 2

2 2

2

2 2

0

2
0

1 0

22 3

1 0

4 3

1

2 2 3 3
( ) = − =

−
=
+− ( )

( )

( )

. ( ) . .

a
b

a
m mm m2 2

0

2 2
0

1

2 1
( ) = −

−( !) ( )
 (3.11)

Hence,

( )
( )

2

1 0 2 2
( 1) 1 |    0

! ( 1)

  −  = + > 
 −   

m mxY x a x
bm m

 (3.12)
To get the second linearly independent solution, we compute an

1 0( )
Note from the coefficient of xr

( )r a r+ ( ) =1 02

1

If follows that

a a1 1

10 0 0 0( ) = ( ) =
From recurrence relation Equation (2.10)

( ) ( )1 1
3 5 2 10      0 0      0 a a a += =… = = … =

We need only to complete a Mm2

1 0 1 2 3( ) = …, , , ,

( ) 2 2
2 2 2

 ( )1 , 1, 2, 3,
(2 )  ( 1)

ma ra r m
b m r m r

−−∴ = =
+ + −

( )
( ) ( )

0 02
42 2 2 4 2 2

 ( )( )1   
(2  )  (4 )  (2 ) 14  (2 1)rr

a a ra ra r
b r b b r r r rr r

− +−⇒ = = =
+ + + ++ + −

( ) 0
2 2 2 2

( 1)  
 {(2 ) (2 1)

−
⇒ =

+ − +

m

m m

aa r
b m r m r

This computation of a rm2 ( )  can be done most conveniently by noting that if

( ) ( ) ( ) ( )2
1 2         n

nf x x x x  = −∝ −∝ … −∝

( ) ( ) ( ) ( )21 1.1 2.1 1 2
1 1 2  verify  or       ni i

nf x x x x     − −  = −∝ −∝ … − ∝ +… 

( ) ( ) ( )2 1 3
2 2 3   n

nx x x   −  −∝ − ∝ … −∝ +… 

Hence, for x  not equal to ∝ ∝ …∝1 2, n

( )
( )

1
1 2

1 2

   
  

n

n

f x
f x x x

 = + +…
−∝ −∝ ∝
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Moreover, letting r �  equal zero we obtain

( ) ( )( )
1 2
2 2

 (0)1 1 10     
2 ( 1) 2 1 1 2( 1)

m
m m

aa
m m m m m b

 −= + +…+ − − − − 

Substitution for a m2

0( )  from Equation 2.6

( )
1 1 1 1  1 

( 1) 1 ( 1) 2( 1)m mH
m m m m m b

 
= + +…+ + − − − − 

We finally obtain

a H
b

a
m m

mm
m

m

m2

1

2

0

2 2
0

1

2 1
1 2 3( ) = − −

−
=

( )

( !) ( )
, , , , (3.13)

The second solution of the Bessel’s equation of order zero is obtained by setting

a0 1=  and substituting r x a bm m1 2 20 0( ) ( ) = ( )and  in

( ) ( ) ( )2

2 1
 

  r n
n n

n

Y x Y x l x x b r x
∞

=

= +
∩
∑

( ) ( ) ( )
2 0 2

 

1 1
   2 ,  0

22  ( !)n

n
Y x J x nx x n x

n n

∞

=

− +
= >

∩
∑

Recall the general solution is written as

Y a J x a Y x
Y a J v x a Y v b

= ( ) + ( )
∴ = ( ) + ( )

1 0 2 0

1 0 2 0/ /

Which is the solution condition?
W x a AJ v b BY v b= −( ) = ( ) + ( )1 0/ /  (3.14)

And hence, the general solution

( ) [ )1 1  ( /   ( / )]dx x a v AJ v b BY v b
dy

= − = − +
 (3.15)

Table 1: Numerical values pertaining to (3.15)

l 0I / I ( )e 0 lk = log I / I
 =

1
2

k
eϕ

0
 l  

=   

1
22 c

c
P

k EI
θ

θϕ c ∝

0.025 3.6889 6.3245 0.3973 2.5127 0.5370

0.05 2.9957 4.4721 0.5848 2.6153 0.7674

0.10 2.3026 3.1623 0.894φ7 2.8293 1.0610

0.20 1.6904 2.2361 1.4800 3.3094 1.4183

0.30 1.2040 1.8257 1.4800 3.3094 1.6557

0.40 0.91630 1.5811 2.9574 4.6757 1.8359

0.50 0.69315 1.4142 4.0618 5.7442 1.9817

0.60 0.51083 1.2910 5.6803 7.3333 2.1049

0.70 0.35668 1.1952 8.3401 9.9681 2.2123

0.80 0.22314 1.1180 13. 6137 15.2201 2.3070

0.90 0.10536 1.0541 29.3426 30.9300 2.3894

1.00 0.0000 1.0000 2.4674
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Putting

 at 1 and 0  at 0dxx a y y
dy

= = = =  (3.16)

Inserting into the general solution

( )11/2 / 2
0 0 (2 / )  2 0k kAJ ne BY ne+ =

 (3.17)
AJ lk BY lk

1 1
2 2 0( ln ) ( ln )+ =  (3.18)

Equation the valves of B A/  from Equations (3.17) and (3.18) lead to

J Y Y J0 1 0 1 0ϕθ θ ϕθ θ( ) ( ) = ( ) ( ) =  (3.19)

Let 1  22
0 ,   / 2  / ,  /ke n b ln k n P EI = = = =

( )
1

2
n 0 2l / 2 / ( / 1 )c cc k l k P Eθ∴ = =  (3.20)

Moreover, the critical thrust is

p EI
c =∝

2 0

2|
 (3.21)

Where ∝= k cθ .

2
 for a uniform thrust ∝=

1

2
π

Numerical data

These are given in Table 1, and they cover a fairly wide range of k,�∝ . The critical load for a strut 
symmetrical about the midpoint of its length, and having hinged ends, is obtained from Equation (3.6), 
by writing l l/ 2 for . They we get

P EI lc' /= ∝4 2

0

2

Moreover, for a uniform strut 4 2 2∝ =π , which yields the Eulerian value of ′P c.

Numerical values pertaining to Equation (3.4).

Degenerate case when k → 0s
The argument of the Bessel function in Equation (3.4) now tend to infinity, so the Bessel’s function 
using Equations (3.1) and (3.2) in the equation we get may be replaced by the dominant terms in their 
asymptotic expansion. Using Equation (3.1), Equation (3.2) we get

1 3 1 3cos   sin   sin  cos   0
4 4 4 4

ϕθ π θ π ϕθ π θ π       = − − − − =       
         (3.22)

Or

( ) 1sin  1  0,
2

θ ϕ π − + =    (3.23)

Moreover, the smallest positive root is given by

( ) 1 1   
2cθ ϕ π π− + =  (3.24)
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However,

( )

2

1
2

1  
1 21 1   ...
2 2!

k
e kϕ

 
    − = − = + + 

 
 (3.25)

Hence, with θc  from Equation (3.20) the left-hand side of Equation (3.21) may be written

   
2

1 1
2 2

0 0

1( )1 1 122 / ( / )      /   
2 2! 2 2c c

k
l k P EI k l P ELI 

 
       
 
  

, (3.26)

As k → 0�. Hence, equating the right-hand sides of Equations (3.24) and (3.26) we obtain

P EL
lc =

1

4

2

0

2

π
,  (3.27)

The well-known Eulerian buckling load.
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