On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a Multiplexer

E. L. Pankratov¹,²

¹Department of Mathematical and Natural Sciences, Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod 603950, Russia, ²Department of Higher Mathematics, Nizhny Novgorod State Technical University, Nizhny Novgorod 603950, Russia

Received: 20-12-2019; Revised: 07-01-2020; Accepted: 20-01-2020

ABSTRACT

In this paper, we introduce an approach to increase the density of field-effect transistors framework a two-level current-mode logic gates in a multiplexer. Framework the approach we consider manufacturing the inverter in heterostructure with the specific configuration. Several required areas of the heterostructure should be doped by diffusion or ion implantation. After that, dopant and radiation defects should by annealed framework optimized scheme. We also consider an approach to decrease the value of mismatch-induced stress in the considered heterostructure. We introduce an analytical approach to analyze mass and heat transport in heterostructures during the manufacturing of integrated circuits with account mismatch-induced stress.

Key words: Increasing of element integration rate, optimization of manufacturing, two-level current-mode logic

INTRODUCTION

In the present time, several actual problems of the solid-state electronics (such as increasing of performance, reliability, and density of elements of integrated circuits: Diodes, field-effect, and bipolar transistors) are intensively solving.¹⁻⁶ To increase the performance of these devices, it is attracted an interest determination of materials with higher values of charge carriers mobility.¹⁻¹⁰ One way to decrease dimensions of elements of integrated circuits is manufacturing them in thin-film heterostructures.¹⁻³,⁵,¹¹ In this case, it is possible to use inhomogeneity of heterostructure and necessary optimization of doping of electronic materials¹² and the development of epitaxial technology to improve these materials (including analysis of mismatch induced stress).¹³⁻¹⁵ Alternative approaches to increase dimensions of integrated circuits are using laser and microwave types of annealing.¹⁶⁻¹⁸

Framework the paper, we introduce an approach to manufacture field-effect transistors. The approach gives a possibility to decrease their dimensions with increasing their density framework two-level current-mode logic gates in a multiplexer. We also consider the possibility to decrease mismatch-induced stress to decrease the quantity of defects, generated due to the stress. In this paper, we consider a heterostructure, which consists of a substrate and an epitaxial layer [Figure 1]. We also consider a buffer layer between the substrate and the epitaxial layer. The epitaxial layer includes itself several sections, which were manufactured using another materials. These sections have been doped by diffusion or ion implantation to manufacture the required types of conductivity (p or n). These areas became sources, drains, and gates.

Address for correspondence:
E. L. Pankratov
E-mail: elp2004@mail.ru
After this doping, it is required annealing of dopant and/or radiation defects. Main aim of the present paper is analysis of redistribution of dopant and radiation defects to determine conditions, which correspond to the decreasing of elements of the considered voltage reference and at the same time to increase their density. At the same time, we consider a possibility to decrease mismatch-induced stress.

METHOD OF SOLUTION

To solve our aim, we determine and analyzed the spatio-temporal distribution of the concentration of dopant in the considered heterostructure. We determine the distribution by solving the second Fick’s law in the following form:

\[
\frac{\partial C(x,y,z,t)}{\partial t} = \frac{\partial}{\partial x} \left[D \frac{\partial C(x,y,z,t)}{\partial x} \right] + \frac{\partial}{\partial y} \left[D \frac{\partial C(x,y,z,t)}{\partial y} \right] + \frac{\partial}{\partial z} \left[D \frac{\partial C(x,y,z,t)}{\partial z} \right] + \Omega \frac{D_s}{kT} \nabla_s \mu_1(x,y,z,t) \int_0^{L_z} C(x,y,W,t) dW + \Omega \frac{D_s}{kT} \nabla_s \mu_2(x,y,z,t) \int_0^{L_z} C(x,y,W,t) dW + \frac{\partial}{\partial x} \left[D_{CS} \frac{\partial \mu_1(x,y,z,t)}{\partial x} \right] + \frac{\partial}{\partial y} \left[\frac{D_{CS}}{V kT} \frac{\partial \mu_1(x,y,z,t)}{\partial y} \right] + \frac{\partial}{\partial z} \left[\frac{D_{CS}}{V kT} \frac{\partial \mu_1(x,y,z,t)}{\partial z} \right]
\]

(1)

with boundary and initial conditions

\[
\frac{\partial C(x,y,z,t)}{\partial x} \bigg|_{x=0} = 0, \quad \frac{\partial C(x,y,z,t)}{\partial x} \bigg|_{x=L_x} = 0, \quad \frac{\partial C(x,y,z,t)}{\partial y} \bigg|_{y=0} = 0, \quad C(x,y,z,0) = f_C(x,y,z),
\]

\[
\frac{\partial C(x,y,z,t)}{\partial y} \bigg|_{y=L_y} = 0, \quad \frac{\partial C(x,y,z,t)}{\partial z} \bigg|_{z=0} = 0, \quad \frac{\partial C(x,y,z,t)}{\partial z} \bigg|_{z=L_z} = 0.
\]

Here, \(C(x,y,z,t)\) is the spatio-temporal distribution of concentration of dopant; \(\Omega\) is the atomic volume of dopant; \(\nabla_s\) is the symbol of surficial gradient; \(\int_0^{L_z} C(x,y,z,t) dW\) is the surficial concentration of dopant on interface between layers of heterostructure (in this situation we assume, that Z-axis is perpendicular to...
interface between layers of heterostructure); \(\mu_i(x,y,z,t) \) and \(\mu_s(x,y,z,t) \) are the chemical potential due to the presence of mismatch-induced stress and porosity of material; \(D \) and \(D_s \) are the coefficients of volumetric and surficial diffusions. Values of dopant diffusions coefficients depend on properties of materials of heterostructure, speed of heating and cooling of materials during annealing, and spatio-temporal distribution of concentration of dopant. Dependences of dopant diffusions coefficients on parameters could be approximated by the following relations:\(^{[24-26]}\)

\[
D_c = D_L(x,y,z,T) \left[1 + \xi \frac{C'}{P'}(x,y,z,t) \right] \left[1 + \xi_1 \frac{V(x,y,z,t)}{V^*} + \xi_2 \frac{V^2(x,y,z,t)}{(V^*)^2} \right] +
\]

\[
D_s = D_{LS}(x,y,z,T) \left[1 + \xi \frac{C'}{P'}(x,y,z,T) \right] \left[1 + \xi_1 \frac{V(x,y,z,t)}{V^*} + \xi_2 \frac{V^2(x,y,z,t)}{(V^*)^2} \right] \tag{2}
\]

Here, \(D_L(x,y,z,T) \) and \(D_{LS}(x,y,z,T) \) are the spatial (due to accounting all layers of heterostructure) and temperature (due to Arrhenius law) dependences of dopant diffusion coefficients; \(T \) is the temperature of annealing; \(P(x,y,z,T) \) is the limit of solubility of dopant; parameter \(\gamma \) depends on properties of materials and could be integer in the following interval \(\gamma \in [1,3] \); \(V(x,y,z,t) \) is the spatio-temporal distribution of concentration of radiation vacancies; \(V^* \) is the equilibrium distribution of vacancies. Concentration dependence of the dopant diffusion coefficient has been described in details in Gotra.\(^{[24]}\) Spatio-temporal distributions of concentration of point radiation defects have been determined by solving the following system of equations:\(^{[20-23,25,26]}\)

\[
\frac{\partial I(x,y,z,t)}{\partial t} = \frac{\partial}{\partial x} \left[D_L(x,y,z,T) \frac{\partial I(x,y,z,t)}{\partial x} \right] + \frac{\partial}{\partial y} \left[D_L(x,y,z,T) \frac{\partial I(x,y,z,t)}{\partial y} \right] +
\]

\[
\frac{\partial}{\partial z} \left[D_L(x,y,z,T) \frac{\partial I(x,y,z,t)}{\partial z} \right] - k_{iL}(x,y,z,T) I^2(x,y,z,t) - k_{iV}(x,y,z,T) \times
\]

\[
I(x,y,z,t)V(x,y,z,t) + \Omega \frac{\partial}{\partial x} \left[\frac{D_{LS}}{kT} \nabla_s \mu(x,y,z,t) \int_{0}^{L_x} I(x,y,W,t) dW \right] +
\]

\[
\Omega \frac{\partial}{\partial y} \left[\frac{D_{LS}}{kT} \nabla_s \mu(x,y,z,t) \int_{0}^{L_y} I(x,y,W,t) dW \right] + \frac{\partial}{\partial z} \left[\frac{D_{LS}}{kT} \frac{\partial \mu_s(x,y,z,t)}{\partial z} \right] \tag{3}
\]

\[
\frac{\partial V(x,y,z,t)}{\partial t} = \frac{\partial}{\partial x} \left[D_V(x,y,z,T) \frac{\partial V(x,y,z,t)}{\partial x} \right] + \frac{\partial}{\partial y} \left[D_V(x,y,z,T) \frac{\partial V(x,y,z,t)}{\partial y} \right] +
\]

\[
\frac{\partial}{\partial z} \left[D_V(x,y,z,T) \frac{\partial V(x,y,z,t)}{\partial z} \right] - k_{iV}(x,y,z,T) V^2(x,y,z,t) - k_{iV}(x,y,z,T) \times
\]

\[
\times I(x,y,z,t)V(x,y,z,t) + \Omega \frac{\partial}{\partial x} \left[\frac{D_{LS}}{kT} \nabla_s \mu(x,y,z,t) \int_{0}^{L_x} V(x,y,W,t) dW \right] +
\]

\[
\Omega \frac{\partial}{\partial y} \left[\frac{D_{LS}}{kT} \nabla_s \mu(x,y,z,t) \int_{0}^{L_y} V(x,y,W,t) dW \right] + \frac{\partial}{\partial z} \left[\frac{D_{LS}}{kT} \frac{\partial \mu_s(x,y,z,t)}{\partial z} \right] +
\]

\[
\frac{\partial}{\partial y} \left[\frac{D_{LS}}{kT} \frac{\partial \mu_s(x,y,z,t)}{\partial y} \right] + \frac{\partial}{\partial z} \left[\frac{D_{LS}}{kT} \frac{\partial \mu_s(x,y,z,t)}{\partial z} \right]
\]

with boundary and initial conditions.
\[
\frac{\partial I(x,y,z,t)}{\partial x} \bigg|_{x=0} = 0, \quad \frac{\partial I(x,y,z,t)}{\partial x} \bigg|_{x=L_x} = 0, \quad \frac{\partial I(x,y,z,t)}{\partial y} \bigg|_{y=0} = 0, \quad \frac{\partial I(x,y,z,t)}{\partial y} \bigg|_{y=L_y} = 0, \quad \frac{\partial I(x,y,z,t)}{\partial z} \bigg|_{z=0} = 0, \quad \frac{\partial I(x,y,z,t)}{\partial z} \bigg|_{z=L_z} = 0.
\]

\[
\frac{\partial V(x,y,z,t)}{\partial x} \bigg|_{x=0} = 0, \quad \frac{\partial V(x,y,z,t)}{\partial x} \bigg|_{x=L_x} = 0, \quad \frac{\partial V(x,y,z,t)}{\partial y} \bigg|_{y=0} = 0, \quad \frac{\partial V(x,y,z,t)}{\partial y} \bigg|_{y=L_y} = 0, \quad \frac{\partial V(x,y,z,t)}{\partial z} \bigg|_{z=0} = 0, \quad \frac{\partial V(x,y,z,t)}{\partial z} \bigg|_{z=L_z} = 0.
\]

\[
(4) \quad I(x,y,z,0) = f_i(x,y,z), \quad V(x,y,z,0) = f V(x,y,z), \quad V(x,y,z) = \left(1 + \frac{2l \omega}{k T \sqrt{x'^2 + y'^2 + z'^2}}\right).
\]

Here, \(I(x,y,z,t) \) is the spatio-temporal distribution of concentration of radiation interstitials; \(I^* \) is the equilibrium distribution of interstitials; \(D_{D_s}(x,y,z,T), D_{D_s}(x,y,z,T), D_{D_{ss}}(x,y,z,T), \) and \(D_{D_{ss}}(x,y,z,T) \) are the coefficients of volumetric and surficial diffusions of interstitials and vacancies, respectively; terms \(V^o(x,y,z,t) \) and \(P(x,y,z,t) \) correspond to generation of divacancies and diinterstitials, respectively (e.g. Vinetskiy and Kholodar\[26\] and appropriate references in this book); \(k_{i_j}(x,y,z,T), k_{i}(x,y,z,T), \) and \(k_{i_j}(x,y,z,T) \) are the parameters of recombination of point radiation defects and generation of their complexes; \(k \) is the Boltzmann constant; \(\omega = a^3 \), \(a \) is the interatomic distance; \(l \) is the specific surface energy. To account porosity of buffer layers, we assume, that porous are approximately cylindrical with average values \(r = \sqrt{x'^2 + y'^2} \) and \(z_i \) before annealing.\[23\] With time small pores decomposing on vacancies. The vacancies absorbing by larger pores.\[27\] With time large pores became larger due to absorbing the vacancies and became more spherical.\[27\] Distribution of concentration of vacancies in the heterostructure, existing due to porosity, could be determined by summing on all pores, i.e.,

\[
V(x,y,z,t) = \sum_i \sum_j \sum_k \sum_{l=0} R = \sqrt{x^2 + y^2 + z^2}.
\]

Here, \(a_i, \beta_j, \) and \(\chi \) are the average distances between centers of pores in directions \(x, y, \) and \(z; \) \(l, m, \) and \(n \) are the quantity of pores inappropriate directions.

Spatio-temporal distributions of divacancies \(\Phi_i(x,y,z,t) \) and di-interstitials \(\Phi_j(x,y,z,t) \) could be determined by solving the following system of equations.\[25,26\]

\[
\frac{\partial \Phi_i(x,y,z,t)}{\partial t} = \frac{\partial}{\partial x} \left[D_{\Phi_i}(x,y,z,T) \frac{\partial \Phi_i(x,y,z,t)}{\partial x} \right] + \frac{\partial}{\partial y} \left[D_{\Phi_i}(x,y,z,T) \frac{\partial \Phi_i(x,y,z,t)}{\partial y} \right] + \frac{\partial}{\partial z} \left[D_{\Phi_i}(x,y,z,T) \frac{\partial \Phi_i(x,y,z,t)}{\partial z} \right] + \Omega \frac{\partial}{\partial x} \left[\frac{D_{\Phi_i}}{k T} \nabla s \mu_i(x,y,z,t) \int_0^l \Phi_i(x,y,W,t) dW \right] +
\]

\[
\frac{\partial}{\partial y} \left[\frac{D_{\Phi_i}}{k T} \nabla s \mu_i(x,y,z,t) \int_0^l \Phi_i(x,y,W,t) dW \right] + k_{i,l}(x,y,z,T) I^2(x,y,z,t) +
\]

\[
\frac{\partial}{\partial z} \left[\frac{D_{\Phi_i}}{k T} \nabla s \mu_i(x,y,z,t) \int_0^l \Phi_i(x,y,W,t) dW \right] + \Omega \frac{\partial}{\partial x} \left[\frac{D_{\Phi_i}}{k T} \nabla s \mu_i(x,y,z,t) \int_0^l \Phi_i(x,y,W,t) dW \right] + \frac{\partial}{\partial y} \left[\frac{D_{\Phi_i}}{k T} \nabla s \mu_i(x,y,z,t) \int_0^l \Phi_i(x,y,W,t) dW \right] +
\]

\[
\frac{\partial}{\partial z} \left[\frac{D_{\Phi_i}}{k T} \nabla s \mu_i(x,y,z,t) \int_0^l \Phi_i(x,y,W,t) dW \right] + \Omega \frac{\partial}{\partial x} \left[\frac{D_{\Phi_i}}{k T} \nabla s \mu_i(x,y,z,t) \int_0^l \Phi_i(x,y,W,t) dW \right] + \frac{\partial}{\partial y} \left[\frac{D_{\Phi_i}}{k T} \nabla s \mu_i(x,y,z,t) \int_0^l \Phi_i(x,y,W,t) dW \right] +
\]

\[
\Omega \frac{\partial}{\partial z} \left[\frac{D_{\Phi_i}}{k T} \nabla s \mu_i(x,y,z,t) \int_0^l \Phi_i(x,y,W,t) dW \right] + k_{i,l}(x,y,z,T) I^2(x,y,z,t) +
\]

\[
\frac{\partial}{\partial x} \left[\frac{D_{\Phi_i}}{k T} \nabla s \mu_i(x,y,z,t) \int_0^l \Phi_i(x,y,W,t) dW \right] + \frac{\partial}{\partial y} \left[\frac{D_{\Phi_i}}{k T} \nabla s \mu_i(x,y,z,t) \int_0^l \Phi_i(x,y,W,t) dW \right] + \frac{\partial}{\partial z} \left[\frac{D_{\Phi_i}}{k T} \nabla s \mu_i(x,y,z,t) \int_0^l \Phi_i(x,y,W,t) dW \right] +
\]

\[
\Omega \frac{\partial}{\partial x} \left[\frac{D_{\Phi_i}}{k T} \nabla s \mu_i(x,y,z,t) \int_0^l \Phi_i(x,y,W,t) dW \right] + k_{i,l}(x,y,z,T) I^2(x,y,z,t) +
\]
\[k_i (x,y,z,T) I(x,y,z,t) \]

\[
\frac{\partial \Phi_i (x,y,z,t)}{\partial t} = \frac{\partial}{\partial x} \left[D_{\phi_i} (x,y,z,T) \frac{\partial \Phi_i (x,y,z,t)}{\partial x} \right] + \frac{\partial}{\partial y} \left[D_{\phi_i} (x,y,z,T) \frac{\partial \Phi_i (x,y,z,t)}{\partial y} \right] +
\]

\[
\frac{\partial}{\partial z} \left[D_{\phi_i} (x,y,z,T) \frac{\partial \Phi_i (x,y,z,t)}{\partial z} \right] + \Omega \frac{\partial}{\partial x} \left[\frac{D_{\phi_i}}{k T} \nabla_s \mu_1 (x,y,z,t) \int_0^\frac{L_i}{k} \Phi_f (x,y,W,t) dW \right] +
\]

\[
\Omega \frac{\partial}{\partial y} \left[\frac{D_{\phi_i}}{k T} \nabla_s \mu_1 (x,y,z,t) \int_0^\frac{L_i}{k} \Phi_f (x,y,W,t) dW \right] + k_{y,f} (x,y,z,T) V^2 (x,y,z,t) +
\]

\[
\frac{\partial}{\partial x} \left[k_{x,f} (x,y,z,T) \nabla_s \mu_2 (x,y,z,t) \right] \]

with boundary and initial conditions

\[
\frac{\partial \Phi_i (x,y,z,t)}{\partial x} \bigg|_{x=0} = 0, \quad \frac{\partial \Phi_i (x,y,z,t)}{\partial x} \bigg|_{x=L_x} = 0, \quad \frac{\partial \Phi_i (x,y,z,t)}{\partial y} \bigg|_{y=0} = 0, \quad \frac{\partial \Phi_i (x,y,z,t)}{\partial y} \bigg|_{y=L_y} = 0, \quad \frac{\partial \Phi_i (x,y,z,t)}{\partial z} \bigg|_{z=0} = 0, \quad \frac{\partial \Phi_i (x,y,z,t)}{\partial z} \bigg|_{z=L_z} = 0,
\]

\[
\Phi_i (x,y,z,0) = f_{\phi_i} (x,y,z), \quad \Phi_j (x,y,z,0) = f_{\phi_j} (x,y,z).
\]

Here, \(D_{\phi_i} (x,y,z,T) \), \(D_{\phi_j} (x,y,z,T) \), \(D_{\phi_k} (x,y,z,T) \), and \(D_{\phi_{k+y}} (x,y,z,T) \) are the coefficients of volumetric and surficial diffusions of complexes of radiation defects; \(k_{x,y,z,T} \) and \(k_{y,y,z,T} \) are the parameters of decay of complexes of radiation defects.

Chemical potential \(\mu_i \) in Eq. (1) could be determined by the following relation\(^{[20]}\)

\[
\mu_i = E(z) \Omega \sigma_{ij} [u_{ij} (x,y,z,t) + u_j (x,y,z,t)] / 2,
\]

where \(E(z) \) is the Young modulus, \(\sigma_{ij} \) is the stress tensor; \(u_{ij} = \frac{1}{2} \left(\frac{\partial u_{i}}{\partial x_j} + \frac{\partial u_{j}}{\partial x_i} \right) \) is the deformation tensor;

\(u_i \) and \(u_j \) are the components \(u_i (x,y,z,t) \), \(u_j (x,y,z,t) \), and \(u_{ij} (x,y,z,t) \) of the displacement vector \(\vec{u} (x,y,z,t) \); \(x_i \) and \(x_j \) are the coordinate \(x, y, z \). The eq. (3) could be transformed to the following form

\[
\mu (x,y,z,t) = \left[\frac{\partial u_i (x,y,z,t)}{\partial x_j} + \frac{\partial u_j (x,y,z,t)}{\partial x_i} \right] \left[\frac{1}{2} \left(\frac{\partial u_{i}}{\partial x_j} + \frac{\partial u_{j}}{\partial x_i} \right) \right] -
\]
\[
\varepsilon_0 \delta_\sigma + \frac{\sigma(z) \delta_\varepsilon}{1 - 2 \varepsilon(z)} \left[\frac{\partial u_k(x,y,z,t)}{\partial x_k} - 3 \varepsilon_0 \right] - K(z) \beta(z) \left[T(x,y,z,t) - T_0 \right] \delta_\sigma \right] \Omega \frac{E(z)}{2} \]

where \(\sigma \) is Poisson’s coefficient; \(\varepsilon_0 = (a_a - a_{ij}) / a_{ij} \) is the mismatch parameter; \(a_a \) and \(a_{ij} \) are lattice distances of the substrate and the epitaxial layer; \(K \) is the modulus of uniform compression; \(\beta \) is the coefficient of thermal expansion; \(T \) is the equilibrium temperature, which coincides (for our case) with room temperature. Components of displacement vector could be obtained by solution of the following equations:

\[
\rho(z) \frac{\partial^2 u_x(x,y,z,t)}{\partial t^2} = \left[\frac{\partial \sigma_{xx}(x,y,z,t)}{\partial x} + \frac{\partial \sigma_{yx}(x,y,z,t)}{\partial y} + \frac{\partial \sigma_{zx}(x,y,z,t)}{\partial z} \right] + \left[K(z) \beta(z) \left[T(x,y,z,t) - T_0 \right] \right] \delta_\sigma \times \left[\frac{E(z)}{2 \left[1 + \sigma(z) \right]} \right] + \left(K(z) - \frac{E(z)}{3 \left[1 + \sigma(z) \right]} \right) \times \left[\frac{\partial^2 u_x(x,y,z,t)}{\partial x \partial y} \right] + \left[\frac{\partial^2 u_x(x,y,z,t)}{\partial y^2} \right] + \left[\frac{\partial^2 u_x(x,y,z,t)}{\partial z^2} \right] + \left[\frac{\partial^2 u_x(x,y,z,t)}{\partial z \partial x} \right] + \left[K(z) \beta(z) \frac{\partial T(x,y,z,t)}{\partial x} \right] \times \left[\frac{E(z)}{2 \left[1 + \sigma(z) \right]} \right] \left[\frac{\partial^2 u_x(x,y,z,t)}{\partial x \partial y} \right] + \left(K(z) - \frac{E(z)}{6 \left[1 + \sigma(z) \right]} \right) \frac{\partial^2 u_x(x,y,z,t)}{\partial y \partial z} + \left(K(z) \beta(z) \frac{\partial T(x,y,z,t)}{\partial y} \right) \times \left(\frac{E(z)}{2 \left[1 + \sigma(z) \right]} \right) + \left(K(z) \beta(z) \frac{\partial T(x,y,z,t)}{\partial z} \right) \times \left(\frac{E(z)}{2 \left[1 + \sigma(z) \right]} \right) + \left(K(z) \beta(z) \frac{\partial T(x,y,z,t)}{\partial x} \right) \times \left(\frac{E(z)}{2 \left[1 + \sigma(z) \right]} \right) + \left(K(z) \beta(z) \frac{\partial T(x,y,z,t)}{\partial y} \right) \times \left(\frac{E(z)}{2 \left[1 + \sigma(z) \right]} \right) + \left(K(z) \beta(z) \frac{\partial T(x,y,z,t)}{\partial z} \right) \times \left(\frac{E(z)}{2 \left[1 + \sigma(z) \right]} \right)
\]
Conditions for the system of Equation (8) could be written in the form
\[
\begin{align*}
\frac{\partial u(0,y,z,t)}{\partial x} &= 0; \quad \frac{\partial u(L_x,y,z,t)}{\partial x} = 0; \quad \frac{\partial u(x,0,z,t)}{\partial y} = 0; \quad \frac{\partial u(x,L_y,z,t)}{\partial y} = 0; \\
\frac{\partial u(x,y,0,t)}{\partial z} &= 0; \quad \frac{\partial u(x,y,L_z,t)}{\partial z} = 0; \quad u(x,y,z,0) = u_0; \quad u(x,y,z,\infty) = u_0.
\end{align*}
\]

We determine spatio-temporal distributions of concentrations of dopant and radiation defects by solving the Equations (1), (3), and (5) framework standard method of averaging of function corrections.\[28\] Previously, we transform the Equations (1), (3), and (5) to the following form with account initial distributions of the considered concentrations.

\[
\begin{align*}
\frac{\partial C(x,y,z,t)}{\partial t} &= \frac{\partial}{\partial x} \left[D \frac{\partial C(x,y,z,t)}{\partial x} \right] + \frac{\partial}{\partial y} \left[D \frac{\partial C(x,y,z,t)}{\partial y} \right] + \frac{\partial}{\partial z} \left[D \frac{\partial C(x,y,z,t)}{\partial z} \right] + f_c(x,y,z) \delta(t) \\
\Omega \frac{\partial}{\partial x} \left[\frac{D_s}{kT} \nabla_s \mu(x,y,z,t) \frac{\partial}{\partial x} \right] &= \int C(x,y,W,t) dW \\
\Omega \frac{\partial}{\partial y} \left[\frac{D_s}{kT} \nabla_s \mu(x,y,z,t) \frac{\partial}{\partial y} \right] &= \int C(x,y,W,t) dW \\
\frac{\partial I(x,y,z,t)}{\partial t} &= \frac{\partial}{\partial x} \left[D_J(x,y,z,T) \frac{\partial I(x,y,z,t)}{\partial x} \right] + \frac{\partial}{\partial y} \left[D_J(x,y,z,T) \frac{\partial I(x,y,z,t)}{\partial y} \right] + \frac{\partial}{\partial z} \left[D_J(x,y,z,T) \frac{\partial I(x,y,z,t)}{\partial z} \right] + \Omega \frac{\partial}{\partial x} \left[\frac{D_{JS}}{kT} \nabla_s \mu_s(x,y,z,t) \frac{\partial}{\partial x} \right] \int I(x,y,W,t) dW \\
\frac{\partial}{\partial y} \left[\frac{D_{JS}}{kT} \nabla_s \mu_s(x,y,z,t) \frac{\partial}{\partial y} \right] &= \int I(x,y,W,t) dW - k_{IJ} (x,y,z,T) I^2(x,y,z) \\
k_{IV} (x,y,z,T) I(x,y,z,T) V(x,y,z,t) + f_i(x,y,z) \delta(t) \\
\frac{\partial V(x,y,z,t)}{\partial t} &= \frac{\partial}{\partial x} \left[D_V(x,y,z,T) \frac{\partial V(x,y,z,t)}{\partial x} \right] + \frac{\partial}{\partial y} \left[D_V(x,y,z,T) \frac{\partial V(x,y,z,t)}{\partial y} \right] + \frac{\partial}{\partial z} \left[D_V(x,y,z,T) \frac{\partial V(x,y,z,t)}{\partial z} \right] + \Omega \frac{\partial}{\partial x} \left[\frac{D_{JS}}{kT} \nabla_s \mu_s(x,y,z,t) \frac{\partial}{\partial x} \right] \int V(x,y,W,t) dW \\
\frac{\partial}{\partial y} \left[\frac{D_{JS}}{kT} \nabla_s \mu_s(x,y,z,t) \frac{\partial}{\partial y} \right] &= \int V(x,y,W,t) dW - k_{IV} (x,y,z,T) V^2(x,y,z) \\
k_{IV} (x,y,z,T) I(x,y,z,T) V(x,y,z,t) + f_i(x,y,z) \delta(t)
\end{align*}
\]
Farther, we replace concentrations of dopant and radiation defects in the right sides of Equations (1a), (3a), and (5a) on their not yet known average values \(\alpha \). In this situation, we obtain equations for the first-order approximations of the required concentrations in the following form

\[
\begin{align*}
\partial_t C_i(x,y,z,t) &= \alpha_i \Omega \frac{\partial}{\partial x} \left[z \frac{D_{cS}}{kT} \nabla_z \mu_i(x,y,z,t) \right] + \alpha_i \Omega \frac{\partial}{\partial y} \left[z \frac{D_{cS}}{kT} \nabla_z \mu_i(x,y,z,t) \right] + \\
\partial_t I_i(x,y,z,t) &= \alpha_{ii} z \Omega \frac{\partial}{\partial x} \left[z \frac{D_{IS}}{kT} \nabla_z \mu_i(x,y,z,t) \right] + \alpha_{ii} \Omega \frac{\partial}{\partial y} \left[z \frac{D_{IS}}{kT} \nabla_z \mu_i(x,y,z,t) \right] + \\
\partial_t f_i(x,y,z,t) &= \frac{\partial}{\partial x} \left[\frac{D_{cS}}{kT} \mu_i(x,y,z,t) \right] + \frac{\partial}{\partial y} \left[\frac{D_{cS}}{kT} \mu_i(x,y,z,t) \right] + \frac{\partial}{\partial z} \left[\frac{D_{cS}}{kT} \mu_i(x,y,z,t) \right]
\end{align*}
\]

(1b)
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer

\(f_i(x,y,z)\delta(t) - \alpha_i^2 k_{i,t} (x,y,z,T) - \alpha_i \alpha_{ii} k_{i,y} (x,y,z,T) \)

\[
\frac{\partial V_i(x,y,z,t)}{\partial t} = \alpha_i z \Omega \frac{\partial}{\partial x} \left[\frac{D_{i,s}}{kT} \nabla_s \mu_i(x,y,z,t) \right] + \alpha_i \Omega \frac{\partial}{\partial y} \left[\frac{D_{i,s}}{kT} \nabla_s \mu_i(x,y,z,t) \right] + \frac{\partial}{\partial z} \left[\frac{D_{i,s}}{kT} \nabla_s \mu_i(x,y,z,t) \right]
\]

\(f_v(x,y,z)\delta(t) - \alpha_i^2 k_{v,r} (x,y,z,T) - \alpha_i \alpha_{iv} k_{v,y} (x,y,z,T) \)

\[
\frac{\partial \Phi_i(x,y,z,t)}{\partial t} = \alpha_i \phi_i z \Omega \frac{\partial}{\partial x} \left[\frac{D_{i,s}}{kT} \nabla_s \mu_i(x,y,z,t) \right] + \alpha_i \phi_i \Omega \frac{\partial}{\partial y} \left[\frac{D_{i,s}}{kT} \nabla_s \mu_i(x,y,z,t) \right] + \frac{\partial}{\partial z} \left[\frac{D_{i,s}}{kT} \nabla_s \mu_i(x,y,z,t) \right]
\]

Integration of the left and right sides of the Equations (1b), (3b), and (5b) on time gives us possibility to obtain relations for above approximation in the final form

\[
C_i(x,y,z,t) = \alpha_i \Omega \frac{\partial}{\partial x} \left[1 + \frac{V(x,y,z,t)}{V^*} + \frac{V^2(x,y,z,t)}{(V^*)^2} \right] \times \nabla_s \mu_i(x,y,z,t) \left[1 + \frac{\xi_i}{\Omega} \frac{V(x,y,z,t)}{V^*} + \frac{V^2(x,y,z,t)}{(V^*)^2} \right] \frac{\nabla \mu_i(x,y,z,t)}{kT} d\tau + \frac{\partial}{\partial y} \left[1 + \frac{\xi_i}{\Omega} \frac{V(x,y,z,t)}{V^*} + \frac{V^2(x,y,z,t)}{(V^*)^2} \right] \frac{\nabla \mu_i(x,y,z,t)}{kT} d\tau + \frac{\partial}{\partial z} \left[1 + \frac{\xi_i}{\Omega} \frac{V(x,y,z,t)}{V^*} + \frac{V^2(x,y,z,t)}{(V^*)^2} \right] \frac{\nabla \mu_i(x,y,z,t)}{kT} d\tau + \frac{\partial}{\partial x} \frac{\nabla \mu_i(x,y,z,t)}{kT} d\tau + \frac{\partial}{\partial y} \frac{\nabla \mu_i(x,y,z,t)}{kT} d\tau + \frac{\partial}{\partial z} \frac{\nabla \mu_i(x,y,z,t)}{kT} d\tau +
\]

\(f_c(x,y,z) \)

\[
I_i(x,y,z,t) = \alpha_i z \Omega \frac{\partial}{\partial x} \nabla_s \mu_i(x,y,z,t) d\tau + \alpha_i z \Omega \frac{\partial}{\partial y} \nabla_s \mu_i(x,y,z,t) d\tau + \alpha_i z \Omega \frac{\partial}{\partial z} \nabla_s \mu_i(x,y,z,t) d\tau +
\]

AJMS/Jan-Mar-2020/Vol 4/Issue 1
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer

We determine the average values of the first-order approximations of concentrations of dopant and radiation defects by the following standard relation. \[\alpha_{\rho} = \frac{1}{\Theta L_0 L_z} \int \int \int \rho_l(x,y,z,t) dz dy dx dt \] (9)

Substitution of the relations Equations (1c), (3c), and (5c) into relation Equation (9) gives us the possibility to obtain required average values in the following form

\[\alpha_{l\rho} = \frac{1}{L_z L_l L_0} \int \int \int f_c(x,y,z) dz dy dx, \quad \alpha_{l\rho} = \sqrt{\frac{a_3 + A}{a_4} - 4 \left(B + \frac{\Theta a_5 L_0}{L_0} \right)} \]
We determine approximations of the second and higher orders of concentrations of dopant and radiation defects framework standard iterative procedure of the method of averaging of function corrections.[28] Framework this procedure to determine approximations of the n-th order of concentrations of dopant and radiation defects, we replace the required concentrations in the Equations (1c), (3c), and (5c) on the following sum $\alpha_n + \rho_{n-1}(x,y,z,t)$. The replacement leads to the following transformation of the appropriate equations

$$\frac{\partial C_2}{\partial t} = \frac{\partial}{\partial x} \left(1 + \frac{\alpha_2 + C_1(x,y,z,t)}{P_1(x,y,z,t)} \right) \left(1 + \frac{V(x,y,z,t)}{V^*} \right) \frac{\partial C_2}{\partial x}$$

where

$$R_{ij} = \frac{S_{ij}}{\Theta L_{i} L_{j} L_{z}} \left(f(x,y,z) \right)_{ij} d z d y d x$$
\[D_L(x, y, z, T) \left\{ 1 + \xi \left[\frac{\alpha_{2c} + C_1(x, y, z, t)}{P'(x, y, z, T)} \right] \right\} + \frac{\partial}{\partial z} \left(1 + \zeta_1 \frac{V(x, y, z, t)}{V'} + \zeta_2 \frac{V^2(x, y, z, t)}{(V')^2} \right) \times \]

\[f_c(x, y, z) \delta(t) + \frac{\partial}{\partial x} \left[D_{cs} \frac{\partial \mu_s(x, y, z, t)}{\partial x} \right] + \frac{\partial}{\partial y} \left[D_{cs} \frac{\partial \mu_s(x, y, z, t)}{\partial y} \right] + \frac{\partial}{\partial z} \left[D_{cs} \frac{\partial \mu_s(x, y, z, t)}{\partial z} \right] + \]

\[\Omega \frac{\partial}{\partial x} \left[D_S k_T \nabla_s \mu_s(x, y, z, t) \right] \int_0^L \left[\alpha_{2c} + C(x, y, W, t) \right] dW \]

\[\frac{\partial}{\partial y} \left[D_S k_T \nabla_s \mu_s(x, y, z, t) \right] \int_0^L \left[\alpha_{2c} + C(x, y, W, t) \right] dW \]

\[\frac{\partial}{\partial z} \left[D_L(x, y, z, T) \frac{\partial I_1(x, y, z, t)}{\partial z} \right] - \kappa_{1z}(x, y, z, T) \left[\alpha_{1z} + I_1(x, y, z, t) \right]^2 - \kappa_{1y}(x, y, z, T) \times \]

\[\left[\alpha_{1i} + I_1(x, y, z, t) \right] \left[\alpha_{iw} + V_1(x, y, z, t) \right] + \Omega \frac{\partial}{\partial x} \left[\nabla_s \mu_s(x, y, z, t) \int_0^L \left[\alpha_{2i} + I_1(x, y, W, t) \right] dW \right] \times \]

\[\frac{D_{is}}{k_T} \right\} + \Omega \frac{\partial}{\partial y} \left[D_{is} k_T \nabla_s \mu_s(x, y, z, t) \right] \int_0^L \left[\alpha_{2i} + I_1(x, y, W, t) \right] dW \]

\[\frac{D_{is}}{k_T} \right\} \left[D_{ic} k_T \nabla_s \mu_s(x, y, z, t) \right] \int_0^L \left[\alpha_{2i} + I_1(x, y, W, t) \right] dW \]

\[\frac{\partial}{\partial t} \left[D_L(x, y, z, T) \frac{\partial V_1(x, y, z, t)}{\partial x} \right] + \frac{\partial}{\partial y} \left[D_L(x, y, z, T) \frac{\partial V_1(x, y, z, t)}{\partial y} \right] + \]

\[\frac{\partial}{\partial z} \left[D_L(x, y, z, T) \frac{\partial V_1(x, y, z, t)}{\partial z} \right] - \kappa_{1v}(x, y, z, T) \left[\alpha_{1v} + V_1(x, y, z, t) \right]^2 - \kappa_{1w}(x, y, z, T) \times \]

\[\left[\alpha_{1i} + I_1(x, y, z, t) \right] \left[\alpha_{iw} + V_1(x, y, z, t) \right] + \Omega \frac{\partial}{\partial x} \left[\nabla_s \mu_s(x, y, z, t) \int_0^L \left[\alpha_{2v} + V_1(x, y, W, t) \right] dW \right] \times \]

\[\frac{D_{iv}}{k_T} \right\} + \Omega \frac{\partial}{\partial y} \left[D_{iv} k_T \nabla_s \mu_s(x, y, z, t) \right] \int_0^L \left[\alpha_{2v} + V_1(x, y, W, t) \right] dW \]

\[\frac{D_{iv}}{k_T} \right\} \left[D_{ic} k_T \nabla_s \mu_s(x, y, z, t) \right] \int_0^L \left[\alpha_{2v} + V_1(x, y, W, t) \right] dW \]

\[\frac{\partial}{\partial t} \left[D_{iv}(x, y, z, T) \frac{\partial \Phi_1(x, y, z, t)}{\partial x} \right] + \frac{\partial}{\partial y} \left[D_{iv}(x, y, z, T) \frac{\partial \Phi_1(x, y, z, t)}{\partial y} \right] + \]
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer

\[
\frac{\partial}{\partial x} \left[\frac{D_{\Phi,S}}{kT} \nabla_s \mu (x,y,z,t) \int_0^L \left[\alpha_{2\Phi} + \Phi_{\mu} (x,y,W,t) \right] dW \right] + \frac{\partial}{\partial y} \left[\frac{D_{\Phi,S}}{kT} \nabla_s \mu (x,y,z,t) \int_0^L \left[\alpha_{2\Phi} + \Phi_{\mu} (x,y,W,t) \right] dW \right] + k_{I,1} (x,y,z,T) I^2 (x,y,z,t) + \\
\frac{\partial}{\partial x} \left[\frac{D_{\Phi,S}}{kT} \partial \mu_s (x,y,z,t) \right] + \frac{\partial}{\partial y} \left[\frac{D_{\Phi,S}}{kT} \partial \mu_s (x,y,z,t) \right] + \frac{\partial}{\partial z} \left[\frac{D_{\Phi,S}}{kT} \partial \mu_s (x,y,z,t) \right] + \\
\frac{\partial}{\partial z} \left[D_{\Phi_s} (x,y,z,T) \frac{\partial \Phi_{\mu} (x,y,z,t)}{\partial z} \right] + f_{\Phi_s} (x,y,z) \delta (t)
\]

\text{(5d)}

Integration of the left and the right sides of Equations (1d), (3d), and (5d) gives us possibility to obtain relations for the required concentrations in the final form

\[
C_1 (x,y,z,t) = \frac{\partial}{\partial x} \left[\int_0^L \left[1 + \xi \left[\frac{\alpha_{2C} + C_1 (x,y,z,\tau)}{P^* (x,y,z,T)} \right] \right] d\tau + f_c (x,y,z) \right]
\]

\[
D_L (x,y,z,T) \frac{\partial C_1 (x,y,z,\tau)}{\partial x} d\tau + \frac{\partial}{\partial y} \int_0^L \left[1 + \xi \left[\frac{\alpha_{2C} + C_1 (x,y,z,\tau)}{P^* (x,y,z,T)} \right] \right] d\tau + f_c (x,y,z) + \\
\frac{\partial}{\partial y} \int_0^L \frac{D_s}{kT} \nabla_s \mu (x,y,z,t) \int_0^L \left[\alpha_{2C} + C_1 (x,y,W,\tau) \right] dW d\tau + \frac{\partial}{\partial y} \int_0^L \nabla_s \mu (x,y,z,\tau) + \\
\frac{\partial}{\partial z} \left[\frac{D_{CS}}{V kT} \partial \mu_s (x,y,z,t) \right] + f_{\mu_s} (x,y,z) \delta (t)
\]
\[\frac{\partial}{\partial y} \left[D_{qs} \frac{\partial \mu_s(x,y,z,t)}{\partial y} \right] + \frac{\partial}{\partial z} \left[D_{qs} \frac{\partial \mu_s(x,y,z,t)}{\partial z} \right] = 0 \]

\[I_2(x,y,z,t) = \frac{d}{dt} \int_{0}^{t} D_{i_1}(x,y,z,T) \frac{\partial I_1(x,y,z,T)}{\partial x} d\tau + \frac{d}{dt} \int_{0}^{t} D_{i_1}(x,y,z,T) \frac{\partial I_1(x,y,z,T)}{\partial y} d\tau + \frac{d}{dt} \int_{0}^{t} D_{i_1}(x,y,z,T) \frac{\partial I_1(x,y,z,T)}{\partial z} d\tau + k_{i_1} \left[\alpha_{2i} + I_1(x,y,z,T) \right]^2 d\tau - \int_{0}^{t} k_{i_1} \left[\alpha_{2i} + I_1(x,y,z,T) \right] \left[\alpha_{2i} + V_1(x,y,z,T) \right] d\tau + \frac{\partial}{\partial x} \int_{0}^{t} \nabla \mu_s(x,y,z,T) \times \]

\[\Omega \frac{D_{is}}{kT} \left[\alpha_{2i} + I_1(x,y,W,T) \right] dW d\tau + \frac{\partial}{\partial x} \left[\frac{D_{is}}{kT} \frac{\partial \mu_s(x,y,z,t)}{\partial x} \right] + \frac{\partial}{\partial y} \left[\frac{D_{is}}{kT} \frac{\partial \mu_s(x,y,z,t)}{\partial y} \right] + \frac{\partial}{\partial z} \left[\frac{D_{is}}{kT} \frac{\partial \mu_s(x,y,z,t)}{\partial z} \right] + f_i(x,y,z) \]

\[V_2(x,y,z,t) = \frac{d}{dt} \int_{0}^{t} D_{v_1}(x,y,z,T) \frac{\partial V_1(x,y,z,T)}{\partial x} d\tau + \frac{d}{dt} \int_{0}^{t} D_{v_1}(x,y,z,T) \frac{\partial V_1(x,y,z,T)}{\partial y} d\tau + \frac{d}{dt} \int_{0}^{t} D_{v_1}(x,y,z,T) \frac{\partial V_1(x,y,z,T)}{\partial z} d\tau + k_{v_1} \left[\alpha_{2v} + V_1(x,y,z,T) \right]^2 d\tau - \int_{0}^{t} k_{v_1} \left[\alpha_{2v} + V_1(x,y,z,T) \right] \left[\alpha_{2v} + V_1(x,y,z,T) \right] d\tau + \frac{\partial}{\partial x} \int_{0}^{t} \nabla \mu_s(x,y,z,T) \times \]

\[\Omega \frac{D_{vs}}{kT} \left[\alpha_{2v} + V_1(x,y,W,T) \right] dW d\tau + \frac{\partial}{\partial x} \left[\frac{D_{vs}}{kT} \frac{\partial \mu_s(x,y,z,t)}{\partial x} \right] + \frac{\partial}{\partial y} \left[\frac{D_{vs}}{kT} \frac{\partial \mu_s(x,y,z,t)}{\partial y} \right] + \frac{\partial}{\partial z} \left[\frac{D_{vs}}{kT} \frac{\partial \mu_s(x,y,z,t)}{\partial z} \right] + f_v(x,y,z) \]

\[\Phi_{2i}(x,y,z,t) = \frac{d}{dt} \int_{0}^{t} D_{\phi_i}(x,y,z,T) \frac{\partial \Phi_{1i}(x,y,z,T)}{\partial x} d\tau + \frac{d}{dt} \int_{0}^{t} D_{\phi_i}(x,y,z,T) \frac{\partial \Phi_{1i}(x,y,z,T)}{\partial y} d\tau + \frac{d}{dt} \int_{0}^{t} D_{\phi_i}(x,y,z,T) \frac{\partial \Phi_{1i}(x,y,z,T)}{\partial z} d\tau + \Omega \frac{d}{dt} \int_{0}^{t} \nabla \mu_s(x,y,z,T) \times \]

\[\frac{D_{\phi_i}}{kT} \left[\alpha_{2\phi_i} + \Phi_{1i}(x,y,W,T) \right] dW d\tau + \Omega \frac{d}{dt} \int_{0}^{t} \frac{D_{\phi_i}}{kT} \left[\alpha_{2\phi_i} + \Phi_{1i}(x,y,W,T) \right] dW \times \]
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer

\[
\nabla S \mu (x, y, z, \tau) d\tau + \int_{0}^{1} k_{f,l}(x, y, z, T) I^2 (x, y, z, \tau) d\tau + \frac{\partial}{\partial x} \int_{0}^{1} \frac{D_{\phi,S}}{V k T} \frac{\partial \mu_{2} (x, y, z, \tau)}{\partial x} d\tau + \\
\frac{\partial}{\partial y} \int_{0}^{1} \frac{D_{\phi,S}}{V k T} \frac{\partial \mu_{2} (x, y, z, \tau)}{\partial y} d\tau + \frac{\partial}{\partial z} \int_{0}^{1} \frac{D_{\phi,S}}{V k T} \frac{\partial \mu_{2} (x, y, z, \tau)}{\partial z} d\tau + f_{\phi} (x, y, z) + \\
\int_{0}^{1} k_{f} (x, y, z, T) I (x, y, z, \tau) d\tau
\]

(5e)

\[
\Phi_{2} (x, y, z, \tau) = \frac{\partial}{\partial x} \int_{0}^{1} D_{\phi} (x, y, z, T) \frac{\partial \Phi_{V} (x, y, z, \tau)}{\partial x} d\tau + \frac{\partial}{\partial y} \int_{0}^{1} \frac{D_{\phi}}{V k T} \frac{\partial \Phi_{V} (x, y, z, \tau)}{\partial y} d\tau \times \\
D_{\phi} (x, y, z, T) d\tau + \frac{\partial}{\partial z} \int_{0}^{1} \frac{D_{\phi}}{V k T} \frac{\partial \Phi_{V} (x, y, z, \tau)}{\partial z} d\tau + \Omega \frac{\partial}{\partial x} \int_{0}^{1} \nabla S \mu (x, y, z, \tau) \times \\
\frac{D_{\phi,S}}{k T} \int_{0}^{1} \left[\alpha_{2\phi} + \Phi_{V} (x, y, W, \tau) \right] dW d\tau + \frac{\partial}{\partial y} \int_{0}^{1} \frac{D_{\phi,S}}{V k T} \frac{\partial \Phi_{V} (x, y, z, \tau)}{\partial y} d\tau + \frac{\partial}{\partial z} \int_{0}^{1} \frac{D_{\phi,S}}{V k T} \frac{\partial \Phi_{V} (x, y, z, \tau)}{\partial z} d\tau + f_{\phi} (x, y, z) + \\
\int_{0}^{1} k_{f} (x, y, z, T) V (x, y, z, \tau) d\tau.
\]

Average values of the second-order approximations of required approximations using the following standard relation.\[28\]

\[
\alpha_{2,\rho} = \frac{1}{\Theta L_{L} L_{T} L_{z}} \int_{0}^{L} \int_{0}^{L} \int_{0}^{L} \left[\rho_{2} (x, y, z, \tau) - \rho_{1} (x, y, z, \tau) \right] d z d y d x d t
\]

(10)

Substitution of the relations Equations (1e), (3e), and (5e) into relation Equation (10) gives us the possibility to obtain relations for required average values \(a_{2\varphi}\):

\[
\alpha_{2\varphi} = 0, \quad \alpha_{2\vartheta} = 0, \quad \alpha_{2\tau} = 0, \quad \alpha_{2\varphi} = \frac{(b_{3} + E)^{2}}{4 b_{4}} - 4 \left(F + \Theta a_{3} F + \Theta^{2} L_{L} L_{z} b_{4} \right) - b_{4} + E \left(F + \Theta a_{3} F + \Theta^{2} L_{L} L_{z} b_{4} \right),
\]

where

\[
\alpha_{2f} = \frac{C_{f} - \alpha_{2f} S_{f00} - \alpha_{2f} (2 S_{f1} + S_{f1} + \Theta L_{L} L_{z}) - S_{f02} - S_{f11}}{S_{f01} + \alpha_{2f} S_{f00}},
\]

\[
\alpha_{2f} = \frac{S_{f00} S_{f00} - \Theta L_{L} L_{z}}{S_{f00} S_{f00} - \Theta L_{L} L_{z}}, \quad b_{4} = \frac{S_{f00} S_{f00} (2 S_{f01} + S_{f10})}{\Theta L_{L} L_{z}}.
\]

AJMS/Jan-Mar-2020/Vol 4/Issue 1
Farther, we determine solutions of Equation (8), i.e., components of the displacement vector. To determine the first-order approximations of the considered components framework method of averaging of function corrections, we replace the required functions in the right sides of the equations by their not yet known average values a_i. The substitution leads to the following result

$$ \frac{1}{\Theta}(\Theta L_x L_y L_z + 2S_{H0} + S_{W0}) (C_y - S_{W0} - S_{H1}) + 2C_z S_{W0} S_{W0}, b_0 = \frac{S_{H0}^2}{\Theta L_x L_y L_z} (S_{W0} + S_{W0}^2) - \frac{S_{H0}}{L_x L_y L_z} \times $$

$$ \frac{1}{\Theta}(\Theta L_x L_y L_z + 2S_{H0} + S_{W0}) (C_y - S_{W0} - S_{H1}) + 2C_z S_{W0} S_{W0}, b_0 = \frac{S_{H0}^2}{\Theta L_x L_y L_z} (S_{W0} + S_{W0}^2) - \frac{S_{H0}}{L_x L_y L_z} \times $$

Integration of the left and the right sides of the above relations on time t leads to the following result

$$ \rho(z) \frac{\partial^2 u_{x}(x, y, z, t)}{\partial t^2} = -K(z) \beta(z) \frac{\partial T(x, y, z, t)}{\partial x} $$

$$ \rho(z) \frac{\partial^2 u_{y}(x, y, z, t)}{\partial y^2} = -K(z) \beta(z) \frac{\partial T(x, y, z, t)}{\partial y} $$

Integration of the left and the right sides of the above relations on time t leads to the following result

$$ u_{x}(x, y, z, t) = u_{0x} + K(z) \frac{\beta(z)}{\rho(z)} \frac{\partial}{\partial x} \int_{0}^{\theta} T(x, y, z, \tau) \, d\tau \, d\theta $$

$$ u_{y}(x, y, z, t) = u_{0y} + K(z) \frac{\beta(z)}{\rho(z)} \frac{\partial}{\partial y} \int_{0}^{\theta} T(x, y, z, \tau) \, d\tau \, d\theta $$
Integration of the left and right sides of the above relations on time t leads to the following result

$$u_{z}(x,y,z,t) = u_{0z} + K(z) \frac{\beta(z)}{\rho(z)} \int_{0}^{t} T(x,y,z,\tau) d\tau d\vartheta -$$

$$K(z) \frac{\beta(z)}{\rho(z)} \int_{0}^{t} T(x,y,z,\tau) d\tau d\vartheta.$$

Approximations of the second and higher orders of components of displacement vector could be determined using standard replacement of the required components on the following sums $a_{i} u_{i}(x,y,z,t).$[28]

The replacement leads to the following result

$$\rho(z) \frac{\partial u_{ix}}{\partial t} = \left\{ K(z) + \frac{5E(z)}{6[1+\sigma(z)]} \right\} \frac{\partial^{2} u_{ix}(x,y,z,t)}{\partial x^{2}} + \left\{ K(z) - \frac{E(z)}{3[1+\sigma(z)]} \right\} \frac{\partial^{2} u_{ix}(x,y,z,t)}{\partial x \partial y}$$

$$+ \frac{E(z)}{2[1+\sigma(z)]} \left[\frac{\partial^{2} u_{ix}(x,y,z,t)}{\partial y^{2}} + \frac{\partial^{2} u_{ix}(x,y,z,t)}{\partial z^{2}} \right] - \frac{\partial T(x,y,z,t)}{\partial x} \times$$

$$K(z) \beta(z) + \left\{ K(z) + \frac{E(z)}{2[1+\sigma(z)]} \right\} \frac{\partial^{2} u_{iy}(x,y,z,t)}{\partial y \partial z} + \frac{E(z)}{12[1+\sigma(z)]} + K(z) + \left\{ \frac{5E(z)}{12[1+\sigma(z)]} + K(z) \right\} + \left\{ K(z) - \frac{E(z)}{6[1+\sigma(z)]} \right\} \frac{\partial^{2} u_{iz}(x,y,z,t)}{\partial z} + K(z) \frac{\partial^{2} u_{iz}(x,y,z,t)}{\partial x \partial y}$$

$$+ \rho(z) \frac{\partial^{2} u_{iz}(x,y,z,t)}{\partial t} = \frac{E(z)}{2[1+\sigma(z)]} \left[\frac{\partial^{2} u_{iz}(x,y,z,t)}{\partial x^{2}} + \frac{\partial^{2} u_{iz}(x,y,z,t)}{\partial y^{2}} + \frac{\partial^{2} u_{iz}(x,y,z,t)}{\partial x \partial z} \right] + \frac{\partial^{2} u_{iy}(x,y,z,t)}{\partial y \partial z} + \frac{\partial^{2} u_{iy}(x,y,z,t)}{\partial y \partial z} +$$

$$+ \frac{E(z)}{6[1+\sigma(z)]} \frac{\partial}{\partial z} \left[6 \frac{\partial u_{iy}(x,y,z,t)}{\partial z} - \frac{\partial u_{iy}(x,y,z,t)}{\partial x} - \frac{\partial u_{iy}(x,y,z,t)}{\partial y} - \frac{\partial u_{iy}(x,y,z,t)}{\partial z} \right] -$$

$$\frac{\partial u_{iz}(x,y,z,t)}{\partial x} - \frac{\partial u_{iz}(x,y,z,t)}{\partial y} - \frac{\partial u_{iz}(x,y,z,t)}{\partial z} \right\} \frac{E(z)}{1+\sigma(z)} - K(z) \beta(z) \frac{\partial T(x,y,z,t)}{\partial z}.$$

Integration of the left and right sides of the above relations on time t leads to the following result

$$u_{2z}(x,y,z,t) = \frac{1}{\rho(z)} \left\{ K(z) + \frac{5E(z)}{6[1+\sigma(z)]} \right\} \int_{0}^{t} \frac{\partial^{2} u_{iz}(x,y,z,z,\tau)}{\partial x^{2}} d\tau d\vartheta + \frac{1}{\rho(z)} \left\{ K(z) - \frac{E(z)}{3[1+\sigma(z)]} \right\} \int_{0}^{t} \frac{\partial^{2} u_{iz}(x,y,z,z,\tau)}{\partial x \partial y} d\tau d\vartheta +$$

$$+ \frac{E(z)}{2\rho(z)} \int_{0}^{t} \frac{\partial^{2} u_{iy}(x,y,z,z,\tau)}{\partial y \partial z} d\tau d\vartheta + \frac{E(z)}{2\rho(z)} \int_{0}^{t} \frac{\partial^{2} u_{iy}(x,y,z,z,\tau)}{\partial y \partial z} d\tau d\vartheta +$$

$$+ \frac{E(z)}{2\rho(z)} \int_{0}^{t} \frac{\partial^{2} u_{iz}(x,y,z,z,\tau)}{\partial y \partial z} d\tau d\vartheta + \frac{E(z)}{2\rho(z)} \int_{0}^{t} \frac{\partial^{2} u_{iz}(x,y,z,z,\tau)}{\partial y \partial z} d\tau d\vartheta +$$
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer

\[
\frac{\partial^2}{\partial z^2} \int_0^\theta u_1(x, y, z, \tau) d\tau d\theta \right] - \frac{1}{1+\sigma(z)} \frac{\partial^2}{\partial x \partial y} \int_0^\theta u_1(x, y, z, \tau) d\tau d\theta \bigg\{ K(z) + \frac{E(z)}{3[1+\sigma(z)]} \bigg(- K(z) \frac{\beta(z)}{\rho(z)} \int_0^\theta T(x, y, z, \tau) d\tau d\theta - \frac{\partial^2}{\partial x^2} \int_0^\theta u_1(x, y, z, \tau) d\tau d\theta \bigg \} \\
+ \frac{1}{\rho(z)} \left(K(z) + \frac{5E(z)}{6[1+\sigma(z)]} \right) \bigg(- \frac{E(z)}{3[1+\sigma(z)]} \int_0^\theta \frac{\partial^2}{\partial x \partial y} \int_0^\theta u_1(x, y, z, \tau) d\tau d\theta \bigg \} - \frac{1}{\rho(z)} \left(K(z) + \frac{E(z)}{3[1+\sigma(z)]} \right) \frac{\partial^2}{\partial y^2} \int_0^\theta u_1(x, y, z, \tau) d\tau d\theta + \frac{1}{\rho(z)} \left(K(z) + \frac{E(z)}{3[1+\sigma(z)]} \right) \int_0^\theta \frac{\partial^2}{\partial x \partial y} \int_0^\theta u_1(x, y, z, \tau) d\tau d\theta \bigg \} \\
\times \frac{\partial}{\partial x} \int_0^\theta T(x, y, z, \tau) d\tau d\theta \\
u_2(x, y, z, t) = \frac{E(z)}{2\rho(z)[1+\sigma(z)]} \left[\frac{\partial^2}{\partial x^2} \int_0^\theta u_1(x, y, z, \tau) d\tau d\theta + \frac{1}{\rho(z)} \left(K(z) + \frac{5E(z)}{6[1+\sigma(z)]} \right) \right] \times \\
+ \frac{1}{1+\sigma(z)} \frac{\partial^2}{\partial x \partial y} \int_0^\theta u_1(x, y, z, \tau) d\tau d\theta + \frac{1}{\rho(z)} \left(K(z) + \frac{5E(z)}{6[1+\sigma(z)]} \right) \bigg \} \\
+ \frac{\partial^2}{\partial y^2} \int_0^\theta u_1(x, y, z, \tau) d\tau d\theta + \frac{1}{2\rho(z)} \frac{\partial}{\partial z} \left[E(z) \int_0^\theta \frac{\partial}{\partial z} \int_0^\theta u_1(x, y, z, \tau) d\tau d\theta \bigg \} - \frac{E(z)}{6[1+\sigma(z)]} \right] \\
+ \frac{\partial^2}{\partial x \partial y} \int_0^\theta u_1(x, y, z, \tau) d\tau d\theta + \frac{1}{\rho(z)} \frac{\partial^2}{\partial x^2} \int_0^\theta u_1(x, y, z, \tau) d\tau d\theta + \frac{5E(z)}{12[1+\sigma(z)]} \bigg \} \\
+ \frac{\partial^2}{\partial x \partial y} \int_0^\theta u_1(x, y, z, \tau) d\tau d\theta + \frac{1}{\rho(z)} \frac{\partial^2}{\partial x^2} \int_0^\theta u_1(x, y, z, \tau) d\tau d\theta + \frac{1}{\rho(z)} \frac{\partial^2}{\partial y^2} \int_0^\theta u_1(x, y, z, \tau) d\tau d\theta \\
- \frac{1}{2\rho(z)} \left[K(z) - \frac{E(z)}{6[1+\sigma(z)]} \right] \frac{\partial^2}{\partial y \partial z} \int_0^\theta u_1(x, y, z, \tau) d\tau d\theta + u_0, \\
u_3(x, y, z, t) = \frac{E(z)}{2[1+\sigma(z)]} \left[\frac{\partial^2}{\partial x^2} \int_0^\theta u_1(x, y, z, \tau) d\tau d\theta + \frac{\partial^2}{\partial y^2} \int_0^\theta u_1(x, y, z, \tau) d\tau d\theta + \frac{\partial^2}{\partial x \partial y} \int_0^\theta u_1(x, y, z, \tau) d\tau d\theta \right] \\
- \frac{1}{2\rho(z)} \left[K(z) - \frac{E(z)}{6[1+\sigma(z)]} \right] \frac{\partial^2}{\partial y \partial z} \int_0^\theta u_1(x, y, z, \tau) d\tau d\theta + u_0, \\
\frac{\partial^2}{\partial x^2} \int_0^\theta u_1(x, y, z, \tau) d\tau d\theta + \frac{\partial^2}{\partial y^2} \int_0^\theta u_1(x, y, z, \tau) d\tau d\theta + \frac{\partial^2}{\partial x \partial y} \int_0^\theta u_1(x, y, z, \tau) d\tau d\theta + u_0,

AJMS/Jan-Mar-2020/Vol 4/Issue 1
\[
\frac{\partial^2}{\partial x \partial t} \int_{0}^{\theta} u_{lx}(x,y,z,\tau) \, d\tau \, d\theta + \frac{\partial^2}{\partial y \partial t} \int_{0}^{\theta} u_{ly}(x,y,z,\tau) \, d\tau \, d\theta \int_{0}^{\theta} \frac{1}{\rho(z)} \, d\theta + \frac{1}{\rho(z)} \times
\]

\[
\frac{\partial}{\partial z} \left[K(z) \int_{0}^{\theta} u_{lx}(x,y,z,\tau) \, d\tau \, d\theta + \frac{\partial}{\partial y} \int_{0}^{\theta} u_{lx}(x,y,z,\tau) \, d\tau \, d\theta + \right.
\]

\[
\frac{\partial}{\partial z} \left[E(z) \int_{0}^{\theta} u_{lx}(x,y,z,\tau) \, d\tau \, d\theta \right] + \frac{1}{6\rho(z)} \frac{\partial}{\partial z} \left[6 \frac{\partial}{\partial z} \int_{0}^{\theta} u_{lx}(x,y,z,\tau) \, d\tau \, d\theta - \right.
\]

\[
\frac{\partial}{\partial x} \int_{0}^{\theta} u_{lx}(x,y,z,\tau) \, d\tau \, d\theta - \frac{\partial}{\partial y} \int_{0}^{\theta} u_{lx}(x,y,z,\tau) \, d\tau \, d\theta - \frac{\partial}{\partial z} \int_{0}^{\theta} u_{lx}(x,y,z,\tau) \, d\tau \, d\theta \right] -
\]

\[
K(z) \frac{\beta(z)}{\rho(z)} \frac{\partial}{\partial z} \int_{0}^{\theta} T(x,y,z,\tau) \, d\tau \, d\theta + u_{0z}.
\]

Framework this paper, we determine the concentration of dopant, concentrations of radiation defects, and components of displacement vector using the second-order approximation framework method of averaging of function corrections. This approximation is usually enough good approximation to make qualitative analysis and to obtain some quantitative results. All obtained results have been checked by comparison with the results of numerical simulations.

DISCUSSION

In this section, we analyzed the dynamics of redistributions of dopant and radiation defects during annealing and under the influence of mismatch-induced stress and modification of porosity. Typical distributions of concentrations of infused dopant in heterostructures.

Increasing of number of the curve corresponds to increasing of annealing time is presented on Figures 2 and 3 for diffusion and ion types of doping, respectively. These distributions have been calculated for the case, when the value of dopant diffusion coefficient in doped area is larger than in the nearest areas. The figures show that inhomogeneity of heterostructure gives us the possibility to increase the compactness of concentrations of dopants and at the same time to

Figure 2: Distributions of concentration of infused dopant in heterostructure from Figure 1 in direction, which is perpendicular to the interface between epitaxial layer substrate. Increasing of number of the curve corresponds to increasing of difference between values of the dopant diffusion coefficient in layers of heterostructure under condition, when value of dopant diffusion coefficient in epitaxial layer is larger than the value of dopant diffusion coefficient in the substrate.
increase the homogeneity of dopant distribution in doped part of the epitaxial layer. However, framework this approach of manufacturing of bipolar transistor is necessary to optimize annealing of dopant and/or radiation defects. Reason for, this optimization is the following. If annealing time is small, the dopant did not achieve any interfaces between materials of the heterostructure. In this situation, one cannot find any modifications of the distribution of the concentration of dopant. If annealing time is large, the distribution of concentration of dopant is too homogenous. We optimize the annealing time framework recently introduces approach.\[29-37\] Framework this criterion, we approximate real distribution of concentration of dopant by step-wise function [Figure 4 and 5]. Farther, we determine optimal values of annealing time by minimization of the following mean-squared error

\[
U = \frac{1}{L_xL_yL_z} \int_0^L \int_0^L \int_0^L \left(C(x,y,z,\Theta) - \psi(x,y,z) \right) dz \, dy \, dx
\]

(11)

Figure 3: Distributions of concentration of implanted dopant in heterostructure from Figure 1 in direction, which is perpendicular to the interface between epitaxial layer substrate. Curves 1 and 3 corresponds to annealing time \(\Theta=0.0048(L_x^2+L_y^2+L_z^2)/D_0\). Curves 2 and 4 correspond to annealing time \(\Theta=0.0057(L_x^2+L_y^2+L_z^2)/D_0\). Curves 1 and 2 correspond to the homogenous sample. Curves 3 and 4 correspond to heterostructure under condition, when the value of dopant diffusion coefficient in epitaxial layer is larger than the value of dopant diffusion coefficient in the substrate

Figure 4: Spatial distributions of dopant in heterostructure after dopant infusion. Curve 1 is the idealized distribution of dopant. Curves 2-4 are real distributions of dopant for different values of annealing time. Increasing of number of the curve corresponds to increasing of annealing time
where $\Psi(x,y,z)$ is the approximation function. Dependences of optimal values of annealing time on parameters are presented on Figures 6 and 7 for diffusion and ion types of doping, respectively. It should be noted that it is necessary to anneal radiation defects after ion implantation. One could find the spreading of concentration of distribution of dopant during this annealing. In the ideal case distribution of dopant achieves appropriate interfaces between materials of heterostructure during annealing of radiation defects. If dopant did not achieve any interfaces during annealing of radiation defects, it is practically to additionally anneal the dopant. In this situation, the optimal value of additional annealing time of implanted dopant is smaller than annealing time of infused dopant.

Farther, we analyzed the influence of relaxation of mechanical stress on the distribution of dopant in doped areas of the heterostructure. Under the following conditions $\varepsilon_0 < 0$, one can find compression of distribution of concentration of dopant near the interface between materials of the heterostructure.
Contrary (at $\varepsilon_0 > 0$) one can find the spreading of distribution of concentration of dopant in this area. This changing of distribution of concentration of dopant could be at least partially compensated using laser annealing.[37] This type of annealing gives us the possibility to accelerate the diffusion of dopant and another processes in the annealed area due to inhomogeneous distribution of temperature and Arrhenius law. Accounting relaxation of mismatch-induced stress in heterostructure could lead to the changing of optimal values of annealing time. At the same time, modification of porosity gives us the possibility to decrease the value of mechanical stress. On the one hand, mismatch-induced stress could be used to increase the density of elements of integrated circuits. On the other hand, it could lead to generation dislocations of the discrepancy. Figures 8 and 9 show distributions of the concentration of vacancies in porous materials and component of the displacement vector, which is perpendicular to the interface between layers of heterostructure.

Figure 7: Dependences of dimensionless optimal annealing time for doping by ion implantation, which have been obtained by minimization of mean-squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and $\xi = \gamma = 0$ for equal to each other values of the dopant diffusion coefficient in all parts of the heterostructure. Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter ε for $a/L = 1/2$ and $\xi = \gamma = 0$. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter ξ for $a/L = 1/2$ and $\varepsilon = \gamma = 0$. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter γ for $a/L = 1/2$ and $\varepsilon = \xi = 0$.

Figure 8: Normalized dependences of component u_z of displacement vector on coordinate z for nonporous (curve 1) and porous (curve 2) epitaxial layers.
CONCLUSION

In this paper, we model redistribution of infused and implanted dopants with account relaxation mismatch-induced stress during manufacturing field-effect heterotransistors framework two-level current-mode logic gates in a multiplexer. We formulate recommendations for the optimization of annealing to decrease dimensions of transistors and to increase their density. We formulate recommendations to decrease mismatch-induced stress. Analytical approach to model diffusion and ion types of doping with account concurrent changing of parameters in space and time has been introduced. At the same time, the approach gives us the possibility to take into account the nonlinearity of considered processes.

REFERENCES

Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer