

RESEARCH ARTICLE

AJMS

Some Results on Common Fixed Point Theorems in Hilbert Space

N. Seshagiri Rao¹, K. Kalyani²

¹Department of Applied Mathematics, School of Applied Natural Science, Adama Science and Technology University, Post Box No. 1888, Adama, Ethiopia, ²Department of Science and Humanities, Vignan's Foundation for Science, Technology and Research, Guntur, Andhra Pradesh, India

Received: 25-12-2019; Revised: 17-01-2020; Accepted: 31-01-2020

ABSTRACT

This article provides the existence and uniqueness of a common fixed point for a pair of self-mappings, positive integers powers of a pair, and a sequence of self-mappings over a closed subset of a Hilbert space satisfying various contraction conditions involving rational expressions.

Key words: Hilbert space, closed subset, Cauchy sequence, completeness. **Mathematics Subject Classification:** 40A05, 47H10, 54H25.

INTRODUCTION

From the well-known Banach's contraction principle, every contraction mapping of a complete metric space into itself has a unique fixed point. This celebrated principle has played an important role in the development of different results related to fixed points and approximation theory. Later, it has been generalized by many authors^[1-14] in metric space by involving either ordinary or rational terms in the inequalities presented there. Again, these results were extended by other or the same researchers^[15-21] in different spaces. Thereafter, these results were again extended/developed for getting a unique fixed point to a pair of continuous self/different mappings^[22-26] or more than two or a sequence of mappings, which may be continues or non-continues or imposing some weaker conditions on the mappings in the same or different spaces.^[27-33]

As already stated, many authors have generalized Banach's contraction principle through rational expressions in different spaces such as metric, convex Banach's space, and normed spaces. But still here are some extensions/generalizations of this principle paying an attention in terms of taking rational expression in Hilbert spaces.

In this paper, we have considered a pair of self-mappings T_1 and T_2 of a closed subset X of a Hilbert space, satisfying certain rational inequalities and obtained a unique fixed point for both T_1 and T_2 . We have developed this result to the pair T_1^{p} and T_2^{q} where p and q are some positive integers and then also further extended the same results to a sequence of mappings. In each of the above three cases, we have obtained common fixed point in X. These results are generalizations of Koparde and Waghmode^[29] in Hilbert space.

MAIN RESULTS

Theorem 1: Let T_1 and T_2 be two self-mappings of a closed subset X of a Hilbert space satisfying the inequality

$$\begin{aligned} \|T_{1}x - T_{2}y\|^{2} &\leq \alpha \frac{\|x - T_{2}y\|^{2} \left[1 + \|y - T_{1}x\|^{2}\right]}{1 + \|x - y\|^{2}} + \beta \frac{\|x - y\|^{2} \left[1 + \|x - T_{2}y\|^{2}\right]}{1 + \|x - y\|^{2}} \\ &+ \gamma \left[\|y - T_{1}x\|^{2} + \|x - T_{2}y\|^{2}\right] + \delta \|x - y\|^{2} \end{aligned}$$

for all $x, y \in X$ and $x \neq y$, where $\alpha, \beta, \gamma, \delta$ are positive real's with $4\alpha + \beta + 4\gamma + \delta < 1$. Then, T_1 and T_2 have a unique common fixed point in *X*.

Proof: Let us start with an arbitrary point $x_0 \in X$, define a sequence $\{x_n\}$ as

 $x_1 = T_1 x_0, \ x_2 = T_2 x_1, \ x_3 = T_1 x_2, \dots$

In general,

$$x_{2n+1} = T_1 x_{2n}, \ x_{2n+2} = T_2 x_{2n+1}, \text{ for } n = 0, 1, 2, 3, \dots$$

Next, we have to show that this sequence $\{x_n\}$ is a Cauchy sequence in X. For this consider

$$\begin{aligned} \|x_{2n+1} - x_{2n}\|^{2} &= \|T_{1}x_{2n} - T_{2}x_{2n-1}\|^{2} \\ &\leq \alpha \frac{\|x_{2n} - T_{2}x_{2n-1}\|^{2} \left[1 + \|x_{2n-1} - T_{1}x_{2n}\|^{2}\right]}{1 + \|x_{2n} - x_{2n-1}\|^{2}} + \beta \frac{\|x_{2n} - x_{2n-1}\|^{2} \left[1 + \|x_{2n} - T_{2}x_{2n-1}\|^{2}\right]}{1 + \|x_{2n} - x_{2n-1}\|^{2}} \\ &+ \gamma \left[\|x_{2n-1} - T_{1}x_{2n}\|^{2} + \|x_{2n} - T_{2}x_{2n-1}\|^{2}\right] + \delta \|x_{2n} - x_{2n-1}\|^{2} \\ \Rightarrow \|x_{2n+1} - x_{2n}\|^{2} \leq \frac{\beta + 2\gamma + \delta}{1 - 2\gamma} \|x_{2n} - x_{2n-1}\|^{2} \end{aligned}$$

A similar calculation indicates that

$$\|x_{2n+2} - x_{2n+1}\|^{2} \leq \frac{(2\alpha + \beta + \gamma) + (2\beta + \delta) \|x_{2n+1} - x_{2n}\|^{2}}{(1 - 2\alpha) + (1 - 2\beta) \|x_{2n+1} - x_{2n}\|^{2}} \|x_{2n+1} - x_{2n}\|^{2}$$

Let $k = \frac{\beta + 2\gamma + \delta}{1 - 2\gamma}$ and $s(n) = \frac{(2\alpha + \beta + \gamma) + (2\beta + \delta) \|x_{2n+1} - x_{2n}\|^{2}}{(1 - 2\alpha) + (1 - 2\beta) \|x_{2n+1} - x_{2n}\|^{2}}$, where $s(n)$ depends n . Since

 $4\alpha + \beta + 4\gamma + \delta < 1$, we see that k < 1 and s(n) < 1, for all n.

Let $S = \sup\{s(n) : n = 0, 1, 2,\}$ and let $\lambda^2 = \max\{k, S\}$ so that $0 < \lambda < 1$, as a result of which we get $||x_{n+1} - x_n|| \le \lambda ||x_n - x_{n-1}||$

Repeating the above process in a similar manner, we get

$$||x_{n+1} - x_n|| \le \lambda^n ||x_1 - x_0||$$
, $n \ge 1$

On taking $n \to \infty$, we obtain $||x_{n+1} - x_n|| \to 0$. Hence, it follows that the sequence $\{x_n\}$ is a Cauchy sequence. However, X is a closed subset of Hilbert space and so by the completeness of X, there is a point $\mu \in X$ such that

 $x_n \to \mu$ as $n \to \infty$.

Consequently, the sequences $\{x_{2n+1}\} = \{T_1x_{2n}\}$ and $\{x_{2n+2}\} = \{T_2x_{2n+1}\}$ converge to the same limit μ . Now, we shall show that this μ is a common fixed point of both T_1 and T_2 . For this, in view of the hypothesis note that

$$\begin{split} \|\mu - T_{1}\mu\|^{2} &= \|(\mu - x_{2n+2}) + (x_{2n+2} - T_{1}\mu)\|^{2} \\ &\leq \|\mu - x_{2n+2}\|^{2} + \alpha \frac{\|\mu - T_{2}x_{2n+1}\|^{2} \left[1 + \|x_{2n+1} - T_{1}\mu\|^{2}\right]}{1 + \|\mu - x_{2n+1}\|^{2}} \\ &+ \beta \frac{\|\mu - x_{2n+1}\|^{2} \left[1 + \|\mu - T_{2}x_{2n+1}\|^{2}\right]}{1 + \|\mu - x_{2n+1}\|^{2}} + \gamma \left[\|x_{2n+1} - T_{1}\mu\|^{2} + \|\mu - T_{2}x_{2n+1}\|^{2}\right]} \\ &+ \delta \|\mu - x_{2n+1}\|^{2} + 2 \|\mu - x_{2n+2}\|\|x_{2n+2} - T_{1}\mu\| \end{split}$$

Letting $n \to \infty$, we obtain

$$\|\mu - T_{1}\mu\|^{2} \le (\gamma + \delta) \|\mu - T_{1}\mu\|^{2},$$

$$\Rightarrow T_{\mu}\mu = \mu, \text{ since } \gamma + \delta < 1,$$

Similarly, by considering

$$\|\mu - T_2\mu\|^2 = \|(\mu - x_{2n+1}) + (x_{2n+1} - T_2\mu)\|^2,$$

we get $T_2 \mu = \mu$. Thus, μ is a common fixed point of T_1 and T_2 .

Finally, to prove the uniqueness of a fixed point μ , let $v(\mu \neq v)$ be another fixed point of T_1 and T_2 . Then, from the inequality, we obtain

$$\begin{split} \|\mu - v\|^{2} &= \|T_{1}\mu - T_{2}v\|^{2} \leq \alpha \frac{\|\mu - T_{2}v\|^{2} \left[1 + \|v - T_{1}\mu\|^{2}\right]}{1 + \|\mu - v\|^{2}} + \beta \frac{\|\mu - v\|^{2} \left[1 + \|\mu - T_{2}v\|^{2}\right]}{1 + \|\mu - v\|^{2}} \\ &+ \gamma \left[\|v - T_{1}\mu\|^{2} + \|\mu - T_{2}v\|^{2}\right] + \delta \|v - \mu\|^{2} \\ &\Rightarrow \|\mu - v\|^{2} \leq (\alpha + \beta + 2\gamma + \delta) \|\mu - v\|^{2} \\ &\Rightarrow \mu = v, \text{ since } \alpha + \beta + 2\gamma + \delta < 1. \end{split}$$

Hence, μ is a unique common fixed point of both T_1 and T_2 in X. This completes the proof of the theorem.

Theorem 2: Let X be a closed subset of a Hilbert space and T_1 , T_2 be two mappings on X itself satisfying

$$\begin{aligned} \left\| T_{1}^{p} x - T_{2}^{q} y \right\|^{2} &\leq \alpha \frac{\left\| x - T_{2}^{q} y \right\|^{2} \left[1 + \left\| y - T_{1}^{p} x \right\|^{2} \right]}{1 + \left\| x - y \right\|^{2}} + \beta \frac{\left\| x - y \right\|^{2} \left[1 + \left\| x - T_{2}^{q} y \right\|^{2} \right]}{1 + \left\| x - y \right\|^{2}} \\ &+ \gamma \left[\left\| y - T_{1}^{p} x \right\|^{2} + \left\| x - T_{2}^{q} y \right\|^{2} \right] + \delta \left\| x - y \right\|^{2} \end{aligned}$$

for all $x, y \in X$ and $x \neq y$, where $\alpha, \beta, \gamma, \delta$ are positive real's with $4\alpha + \beta + 4\gamma + \delta < 1$ and p, q are positive integers. Then, T_1 and T_2 have a unique common fixed point in *X*.

Proof: From above Theorem-1, T_1^p and T_2^q have a unique common fixed point $\mu \in X$ so that

 $T_1^{p}\mu = \mu \text{ and } T_2^{q}\mu = \mu.$ Now, $T_1^{p}(T_1\mu) = T_1(T_1^{p}\mu) = T_1\mu$ $\Rightarrow T_1\mu$ is a fixed point of T_1^{p} .

But μ is a unique fixed point of T_1^p .

$$\therefore T_1\mu = \mu$$

Similarly, we get $T_2 \mu = \mu$

 \therefore μ is a common fixed point of T_1 and T_2 .

For uniqueness, let v be another fixed point of T_1 and T_2 so that $T_1v = T_2v = v$. Then,

$$\|\mu - v\|^{2} = \|T_{1}^{p}\mu - T_{2}^{q}v\|^{2} \le \alpha \frac{\|\mu - T_{2}^{q}v\|^{2} \left[1 + \|v - T_{1}^{p}\mu\|^{2}\right]}{1 + \|\mu - v\|^{2}} + \beta \frac{\|\mu - v\|^{2} \left[1 + \|\mu - T_{2}^{q}v\|^{2}\right]}{1 + \|\mu - v\|^{2}} + \gamma \left[\|v - T_{1}^{p}\mu\|^{2} + \|\mu - T_{2}^{q}v\|^{2}\right] + \delta \|v - \mu\|^{2}$$

$$\Rightarrow \|\mu - v\|^2 \le (\alpha + \beta + 2\gamma + \delta) \|\mu - v\|^2$$

$$\Rightarrow \mu = \nu$$
, since $\alpha + \beta + 2\gamma + \delta < 1$

Hence, μ is a unique common fixed point of T_1 and T_2 in X.

Complete the proof of the theorem.

In the following theorem, we have taken a sequence of mappings on a closed subset of a Hilbert space converges pointwise to a limit mapping and show that if this limit mapping has a fixed point; then, this fixed point is also the limit of fixed points of the mappings of the sequence.

Theorem 3: Let X be a closed subset of a Hilbert space and let $\{T_i\}$ be a sequence of mappings on X into itself converging pointwise to T satisfying the following condition

$$\|T_{i}x - T_{i}y\|^{2} \leq \alpha \frac{\|x - T_{i}y\|^{2} \left[1 + \|y - T_{i}x\|^{2}\right]}{1 + \|x - y\|^{2}} + \beta \frac{\|x - y\|^{2} \left[1 + \|x - T_{i}y\|^{2}\right]}{1 + \|x - y\|^{2}} + \gamma \left[\|y - T_{i}x\|^{2} + \|x - T_{i}y\|^{2}\right] + \delta \|x - y\|^{2}$$

for all $x, y \in X$ and $x \neq y$, where $\alpha, \beta, \gamma, \delta$ are positive real's with $4\alpha + \beta + 4\gamma + \delta < 1$. If each T_i has a fixed point μ_i and T has a fixed point μ , then the sequence $\{\mu_n\}$ converges to μ .

Proof: Since μ_i is a fixed point of T_i , then we have

$$\begin{aligned} \|\mu - \mu_n\|^2 &= \|T\mu - T_n\mu_n\|^2 = \|(T\mu - T_n\mu) + (T_n\mu - T_n\mu_n)\|^2 \\ &\leq \|T\mu - T_n\mu\|^2 + \|T_n\mu - T_n\mu_n\|^2 + 2\|T\mu - T_n\mu\|\|T_n\mu - T_n\mu_n\| \\ &= \|T\mu - T_n\mu\|^2 + \alpha \frac{\|\mu - T_n\mu_n\|^2 \left[1 + \|\mu_n - T_n\mu\|^2\right]}{1 + \|\mu - \mu_n\|^2} + \beta \frac{\|\mu - \mu_n\|^2 \left[1 + \|\mu - T_n\mu_n\|^2\right]}{1 + \|\mu - \mu_n\|^2} \\ &+ \gamma \left[\|\mu_n - T_n\mu\|^2 + \|\mu - T_n\mu_n\|^2\right] + \delta \|\mu - \mu_n\|^2 + 2\|T\mu - T_n\mu\|\|T_n\mu - T_n\mu_n\| \end{aligned}$$

which implies that

$$\begin{split} \|\mu - \mu_n\|^2 &= \|T\mu - T_n\mu\|^2 + \alpha \frac{\|\mu - T_n\mu_n\|^2 \left[1 + \|\mu_n - T_n\mu\|^2\right]}{1 + \|\mu - \mu_n\|^2} \\ &+ \beta \frac{\|\mu - \mu_n\|^2 \left[1 + \|\mu - T_n\mu_n\|^2\right]}{1 + \|\mu - \mu_n\|^2} + \gamma \left[\|\mu_n - T_n\mu\|^2 + \|\mu - T_n\mu_n\|^2\right] \\ &+ \delta \|\mu - \mu_n\|^2 + 2 \|T\mu - T_n\mu\| \|T_n\mu - T_n\mu_n\| \\ \text{Letting } n \to \infty \text{ so that } T_n\mu \to T\mu, \ 2 \|T\mu - T_n\mu\| \|T_n\mu - T_n\mu_n\| \to 0, \text{ we get} \\ \lim_{n \to \infty} \|\mu - \mu_n\|^2 &\leq (\alpha + \beta + 2\gamma + \delta) \lim_{n \to \infty} \|\mu - \mu_n\|^2 \\ \Rightarrow \lim_{n \to \infty} \|\mu - \mu_n\| = 0, \text{ since } \alpha + \beta + 2\gamma + \delta < 1 \\ \Rightarrow \mu_n \to \mu \text{ as } n \to \infty \end{split}$$

This completes the proof.

The following theorem is the refinement of the above Theorem-1, by involving three rational terms in the inequality.

Theorem 4: Let X be a closed subset of a Hilbert space and T_1 , T_2 be two self-mappings on X satisfying the following condition, then T_1 and T_2 have a unique common fixed point in X.

$$\begin{aligned} \|T_{1}x - T_{2}y\|^{2} &\leq \alpha \frac{\|x - T_{2}y\|^{2} \left[1 + \|y - T_{1}x\|^{2}\right]}{1 + \|x - y\|^{2}} + \beta \frac{\|y - T_{1}x\|^{2} \left[1 + \|x - T_{2}y\|^{2}\right]}{1 + \|x - y\|^{2}} \\ &+ \gamma \frac{\|x - y\|^{2} \left[1 + \|x - T_{1}x\|^{2}\right]}{1 + \|y - T_{2}y\|^{2}} + \delta \|x - y\|^{2} \end{aligned}$$

for all $x, y \in X$ and $x \neq y$, where $\alpha, \beta, \gamma, \delta$ are positive real's with $4(\alpha + \beta) + \gamma + \delta < 1$.

Proof: Let us construct a sequence $\{x_n\}$ for an arbitrary point $x_0 \in X$ as follows:

$$x_{2n+1} = T_1 x_{2n}, \ x_{2n+2} = T_2 x_{2n+1}$$
 for $n = 0, 1, 2, 3, \dots$
Then

Then

$$\begin{aligned} \|x_{2n+1} - x_{2n}\|^{2} &= \|T_{1}x_{2n} - T_{2}x_{2n-1}\|^{2} \\ &\leq \alpha \frac{\|x_{2n} - T_{2}x_{2n-1}\|^{2} \left[1 + \|x_{2n-1} - T_{1}x_{2n}\|^{2}\right]}{1 + \|x_{2n} - x_{2n-1}\|^{2}} + \beta \frac{\|x_{2n-1} - T_{1}x_{2n}\|^{2} \left[1 + \|x_{2n} - T_{2}x_{2n-1}\|^{2}\right]}{1 + \|x_{2n} - x_{2n-1}\|^{2}} \\ &+ \gamma \frac{\|x_{2n} - x_{2n-1}\|^{2} \left[1 + \|x_{2n} - T_{1}x_{2n}\|^{2}\right]}{1 + \|x_{2n-1} - T_{2}x_{2n-1}\|^{2}} + \delta \|x_{2n} - x_{2n-1}\|^{2}} \end{aligned}$$

which suggests that

$$\|x_{2n+1} - x_{2n}\|^{2} \le s(n) \|x_{2n} - x_{2n-1}\|^{2}, \text{ where } s(n) = \frac{(2\beta + \gamma + \delta) + \delta \|x_{2n} - x_{2n-1}\|^{2}}{(1 - 2\beta) + (1 - \gamma) \|x_{2n} - x_{2n-1}\|^{2}}$$

Similarly, we get

$$||x_{2n+2} - x_{2n+1}||^2 \le t(n) ||x_{2n+1} - x_{2n}||^2$$
, where $t(n) = \frac{(2\alpha + \gamma + \delta) + (\gamma + \delta) ||x_{2n+1} - x_{2n}||^2}{(1 - 2\alpha) + ||x_{2n+1} - x_{2n}||^2}$

Since $4(\alpha + \beta) + \gamma + \delta < 1$ then both s(n) < 1 and t(n) < 1, for all n.

Let
$$S = \sup \{ s(n) : n = 1, 2, \}$$
 and $T = \sup \{ t(n) : n = 1, 2, \}$.

Let $\lambda^2 = \max \{S, T\}$ so that $0 < \lambda < 1$. Hence, from above, we get

$$||x_{n+1} - x_n|| \le \lambda ||x_n - x_{n-1}||$$

Continuing the above process, we obtained

$$||x_{n+1} - x_n|| \le \lambda^n ||x_1 - x_0||$$
, $n \ge 1$

Hence, the sequence $\{x_n\}$ is a Cauchy sequence in X and so it converges to a limit in X. Since the sequences $\{x_{2n+1}\} = \{T_1x_{2n}\}$ and $\{x_{2n+2}\} = \{T_2x_{2n+1}\}$ are subsequences of $\{x_n\}$, then $\{T_1x_{2n}\}$ and $\{T_2x_{2n+1}\}$ converges to the same μ . Now to see that this μ is a common fixed point of T_1 and T_2 . For this using the inequality, we arrive at

$$\begin{aligned} \|\mu - T_{1}\mu\|^{2} &= \|(\mu - x_{2n+2}) + (x_{2n+2} - T_{1}\mu)\|^{2} \\ &\leq \|\mu - x_{2n+2}\|^{2} + \alpha \frac{\|\mu - T_{2}x_{2n+1}\|^{2} \left[1 + \|x_{2n+1} - T_{1}\mu\|^{2}\right]}{1 + \|\mu - x_{2n+1}\|^{2}} \\ &+ \beta \frac{\|x_{2n+1} - T_{1}\mu\|^{2} \left[1 + \|\mu - T_{2}x_{2n+1}\|^{2}\right]}{1 + \|\mu - x_{2n+1}\|^{2}} + \gamma \frac{\|\mu - x_{2n+1}\|^{2} \left[1 + \|\mu - T_{1}\mu\|^{2}\right]}{1 + \|x_{2n+1} - T_{2}x_{2n+1}\|^{2}} \\ &+ \delta \|\mu - x_{2n+1}\|^{2} + 2 \|\mu - x_{2n+2}\|\|x_{2n+2} - T_{1}\mu\| \end{aligned}$$

On taking $n \to \infty$, we obtained $\|\mu - T_1\mu\|^2 \le \beta \|\mu - T_1\mu\|^2$, because $0 < \beta < 1$, it follows immediately that $T_1\mu = \mu$.

Similarly, we get $T_2\mu = \mu$ by considering,

$$\|\mu - T_2\mu\|^2 = \|(\mu - x_{2n+1}) + (x_{2n+1} - T_2\mu)\|^2$$

Thus, μ is a common fixed point of T_1 and T_2 .

Next, we want to show that μ is a unique fixed point of T_1 and T_2 . Let us suppose that $v(\mu \neq v)$ is also a common fixed point of T_1 and T_2 . Then, in view of hypothesis, we have

$$\begin{split} \|\mu - v\|^{2} &\leq \alpha \frac{\|\mu - T_{2}v\|^{2} \left[1 + \|v - T_{1}\mu\|^{2}\right]}{1 + \|\mu - v\|^{2}} + \beta \frac{\|v - T_{1}\mu\|^{2} \left[1 + \|\mu - T_{2}v\|^{2}\right]}{1 + \|\mu - v\|^{2}} \\ &+ \gamma \frac{\|\mu - v\|^{2} \left[1 + \|\mu - T_{1}\mu\|^{2}\right]}{1 + \|v - T_{2}v\|^{2}} + \delta \|v - \mu\|^{2} \\ &\Rightarrow \|\mu - v\|^{2} \leq (\alpha + \beta + \gamma + \delta) \|v - \mu\|^{2} \\ &\Rightarrow \mu = v, \text{ since } \alpha + \beta + \gamma + \delta < 1 \end{split}$$

It follows that $\mu = v$ and so the common fixed point is unique.

This completes the proof of the theorem.

Theorem 5: Let T_1 and T_2 be the self-mappings on a closed subset X of a Hilbert space satisfying

$$\begin{aligned} \left\| T_{1}^{p} x - T_{2}^{q} y \right\|^{2} &\leq \alpha \frac{\left\| x - T_{2}^{q} y \right\|^{2} \left[1 + \left\| y - T_{1}^{p} x \right\|^{2} \right]}{1 + \left\| x - y \right\|^{2}} + \beta \frac{\left\| y - T_{1}^{p} x \right\|^{2} \left[1 + \left\| x - T_{2}^{q} y \right\|^{2} \right]}{1 + \left\| x - y \right\|^{2}} \\ &+ \gamma \frac{\left\| x - y \right\|^{2} \left[1 + \left\| x - T_{1}^{p} x \right\|^{2} \right]}{1 + \left\| y - T_{2}^{q} y \right\|^{2}} + \delta \left\| x - y \right\|^{2} \end{aligned}$$

for all $x, y \in X$ and $x \neq y$, where $\alpha, \beta, \gamma, \delta$ are positive real's with $4(\alpha + \beta) + \gamma + \delta < 1$ and p, q are positive integers. Then, T_1 and T_2 have a unique common fixed point in X.

Proof: From above Theorem-3, T_1^p and T_2^q have a unique common fixed point $\mu \in X$ so that $T_1^p \mu = \mu$ and $T_2^q \mu = \mu$.

Now,
$$T_1^{p}(T_1\mu) = T_1(T_1^{p}\mu) = T_1\mu$$

 \Rightarrow $T_1\mu$ is a fixed point of T_1^p .

But μ is a unique fixed point of T_1^p .

$$\therefore$$
 $T_1\mu = \mu$

Similarly, we get $T_2\mu = \mu$

 \therefore μ is a common fixed point of T_1 and T_2 .

For uniqueness, let v be another fixed point of T_1 and T_2 , so we have $T_1v = T_2v = v$. Then,

$$\begin{aligned} \|\mu - v\|^{2} &= \|T_{1}^{p}\mu - T_{2}^{q}v\|^{2} \leq \alpha \frac{\|\mu - T_{2}^{q}v\|^{2} \left[1 + \|v - T_{1}^{p}\mu\|^{2}\right]}{1 + \|\mu - v\|^{2}} + \beta \frac{\|v - T_{1}^{p}\mu\|^{2} \left[1 + \|\mu - T_{2}^{q}v\|^{2}\right]}{1 + \|\mu - v\|^{2}} \\ &+ \gamma \frac{\|\mu - v\|^{2} \left[1 + \|\mu - T_{1}^{p}\mu\|^{2}\right]}{1 + \|v - T_{2}^{q}v\|^{2}} + \delta \|v - \mu\|^{2} \end{aligned}$$

$$\Rightarrow \|\mu - v\|^{2} \le (\alpha + \beta + \gamma + \delta) \|v - \mu\|^{2}$$

$$\Rightarrow \mu = v, \text{ since } \alpha + \beta + \gamma + \delta < 1$$

This completes the proof of the theorem.

In the following last theorem, we consider a sequence of mappings, which converges pointwise to a limit mapping and shows that if this limit mapping has a fixed point, then this fixed point is also the limit of fixed points of the mappings of the sequence.

Theorem 6: Let $\{T_i\}$ be a sequence of mappings of X into itself converging pointwise to T and let

$$\begin{aligned} \|T_{i}x - T_{i}y\|^{2} &\leq \alpha \frac{\|x - T_{i}y\|^{2} \left[1 + \|y - T_{i}x\|^{2}\right]}{1 + \|x - y\|^{2}} + \beta \frac{\|y - T_{i}x\|^{2} \left[1 + \|x - T_{i}y\|^{2}\right]}{1 + \|x - y\|^{2}} \\ &+ \gamma \frac{\|x - y\|^{2} \left[1 + \|x - T_{i}x\|^{2}\right]}{1 + \|y - T_{i}y\|^{2}} + \delta \|x - y\|^{2} \end{aligned}$$

for all $x, y \in X$ and $x \neq y$, where $\alpha, \beta, \gamma, \delta$ are positive real's with $4(\alpha + \beta) + \gamma + \delta < 1$. If each T_i has a fixed point μ_i and T has a fixed point μ , then the sequence $\{\mu_n\}$ converges to μ in X. **Proof:** We know that μ_i is a fixed point of T_i then

$$\begin{split} \|\mu - \mu_n\|^2 &= \|T\mu - T_n\mu_n\|^2 \\ &= \|(T\mu - T_n\mu) + (T_n\mu - T_n\mu_n)\|^2 \\ &\leq \|T\mu - T_n\mu\|^2 + \|T_n\mu - T_n\mu_n\|^2 + 2\|T\mu - T_n\mu\|\|T_n\mu - T_n\mu_n\| \| \\ &= \|T\mu - T_n\mu\|^2 + \alpha \frac{\|\mu - T_n\mu_n\|^2 \left[1 + \|\mu - \mu_n\|^2\right]}{1 + \|\mu - \mu_n\|^2} \\ &+ \beta \frac{\|\mu_n - T_n\mu\|^2 \left[1 + \|\mu - T_n\mu_n\|^2\right]}{1 + \|\mu - \mu_n\|^2} + \gamma \frac{\|\mu - \mu_n\|^2 \left[1 + \|\mu - T_n\mu\|^2\right]}{1 + \|\mu_n - T_n\mu_n\|^2} \\ &+ \delta \|\mu - \mu_n\|^2 + 2\|T\mu - T_n\mu\| \|T_n\mu - T_n\mu_n\| \\ \text{Letting } n \to \infty \text{ so that } T_n\mu \to T\mu, \ 2\|T\mu - T_n\mu\| \|T_n\mu - T_n\mu_n\| \to 0, \text{ we get} \\ &\lim_{n \to \infty} \|\mu - \mu_n\|^2 \leq (\alpha + \beta + \gamma + \delta) \lim_{n \to \infty} \|\mu - \mu_n\|^2 \\ &\Rightarrow \lim_{n \to \infty} \|\mu - \mu_n\| = 0, \text{ since } \alpha + \beta + \gamma + \delta < 1 \Rightarrow \mu_n \to \mu \text{ as } n \to \infty \end{split}$$

This completes the proof.

CONCLUSIONS

In this paper, Banach's contraction principle has been generalized to obtain a common fixed point for two, positive powers of two, and a sequence of self-mappings defined over a closed subset of a Hilbert space. The existence and uniqueness of a common fixed point for three different types of self-mappings are carried out in all six theorems with various inequalities involving square rational terms.

ACKNOWLEDGMENT

I am very thankful to my Professor G. M. Deheri for his valuable suggestions and constant support for making me to get these fruitful results.

REFERENCES

- 1. Banach S. Sur les operations dans les ensembles abstraits et leur application aux equations untegrales. Fundam Math 1922;3:133-81.
- 2. Chatterji H. A fixed point theorem in metric spaces. Indian J Pure Appl Math 1979;10:449-50.
- Dass BK, Gupta S. An extension of Banach contraction principle through rational expression. Indian J Pure Appl Math 1975;6:1455-8.
- 4. Fisher B. Fixed Point Mappings. Vol. 5. Atti Della Acad Naz De Lincei LIX Fasc; 1975.
- Kazimierz G, Kirk WA. Cambridge studies in advanced mathematics, 28. In: Topics in Metric Fixed Point Theory. Cambridge: Cambridge University Press; 1990.
- 6. Jaggi DS. Some unique fixed point theorems. Indian J Pure Appl Math 1977;8:223-30.
- Jaggi DS, Dass BK. An extension of Banach's fixed point theorem through a rational expression. Bull Calcutta Math Soc 1980;72:261-2.
- 8. Kannan R. Some results on fixed points. Bull Calcutta Math Soc 1968;60:71-6.
- 9. Kannan R. Some results on fixed points-II. Am Math Mon 1969;76:405-8.

- 10. Reich S. Some remarks concerning contraction mappings. Can Math Bull 1971;14:121-4.
- 11. Rhoades BE. A comparison of various definitions of contractive mappings. Trans Am Math Soc 1977;226:257-90.
- 12. Sharma PL, Yuel AK. A unique fixed point theorem in metric space. Bull Calcutta Math Soc 1984;76:153-6.
- 13. Smart DR. Fixed Point Theorems. Cambridge: Cambridge University Press; 1974.
- 14. Zamfirescu T. Fixed point theorems in metric spaces. Arch Math 1972;23:292-8.
- 15. Bhola PK, Sharma PL. A fixed point theorem in strictly convex Banach space. Acta Cienc Indic 1990;16:401-2.
- 16. Chatterji H. On generalization of Banach contraction principle. Indian J Pure Appl Math 1979;10:400-3.
- 17. Cvetkovic M. On the equivalence between Perov fixed point theorem and Banach contraction principle. Filomat 2017;31:3137-46.
- 18. Naik KV. A note on a theorem of Ray and Singh. Indian J Pure Appl Math 1979;10:629-32.
- 19. Nieto JJ, Abdelghani O, Rosana R. Fixed point theorems in generalized Banach algebras and applications. Fixed Point Theory 2018;19:707-32.
- 20. Pandhare DM, Waghmode BB. Fixed point theorems for the extension of Kannan's type mappings in Hilbert spaces. Math Educ 1994;28:189-93.
- 21. Pathak HK. Some fixed point theorems on contractive mappings. Bull Calcutta Math Soc 1988;80:183-8.
- 22. Bajaj N. Some maps on unique common fixed points. Indian J Pure Appl Math 1984;15:843-8.
- 23. Chatterji H. Fixed points for a pair of mappings. Indian J Pure Appl Math 1979;10:886-9.
- 24. Fisher B. Common fixed point and constant mappings satisfying a rational inequality. Math Sem Notes 1978;6:29-35.
- 25. Paliwal YC. Fixed point theorem in metric space. Bull Calcutta Math Soc 1988;80:205-8.
- 26. Wong CS. Common fixed points of two mappings. Pac J Math 1973;48:299-312.
- 27. Ganguly DK, Bandyopadhyay D. Some results on common fixed point theorems in metric space. Bull Calcutta Math Soc 1991;83:137-45.
- 28. Gairola UC, Rawat AS. A fixed point theorem for non-continuous maps satisfying integral type inequality. J Indian Math Soc 2013;80:69-77.
- 29. Koparde PV, Waghmode BB. On sequence of mappings in Hilbert space. Math Educ 1991;25:197-8.
- 30. Nadler SB. Sequence of contraction and fixed points. Pac J Math 1968;27:579-85.
- 31. Pandhare DM. On the sequence of mappings on Hilbert space. Math Educ 1998;32:61-3.
- 32. Rao N, Kalyani K, Acharyulu KV. A unique fixed point theorem in Hilbert space. Acta Cienc Indic 2015;41:39-46.
- 33. Veerapandi T, Kumar SA. Common fixed point theorems of a sequence of mappings on Hilbert space. Bull Calcutta Math Soc 1999;91:299-308.