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ABSTRACT

In this paper, modified g-homotopy analysis method (mg-HAM) is proposed for solving high-order
non-linear partial differential equations. This method improves the convergence of the series solution
and overcomes the computing difficulty encountered in the g-HAM, so it is more accurate than nHAM
which proposed in Hassan and El-Tawil, Saberi-Nik and Golchaman. The second- and third-order cases
are solved as illustrative examples of the proposed method.

Key words: Non-linear partial differential equations, g-homotopy analysis method, modified
g-homotopy analysis method

INTRODUCTION

Most phenomena in our world are essentially non-linear and are described by non-linear equations.
It is still difficult to obtain accurate solutions of non-linear problems and often more difficult to
get an analytic approximation than a numerical one of a given non-linear problem. In 1992, Liao!"
employed the basic ideas of the homotopy in topology to propose a general analytic method for non-
linear problems, namely, homotopy analysis method (HAM). In recent years, this method has been
successfully employed to solve many types of non-linear problems in science and engineering.*'!
All of these successful applications verified the validity, effectiveness, and flexibility of the HAM.
The HAM contains a certain auxiliary parameter 2 which provides us with a simple way to adjust and
control the convergence region and rate of convergence of the series solution. Moreover, by means
of the so-called /-curve, it is easy to determine the valid regions of /4 to gain a convergent series
solution. Hassan and El-Tawil”! presented a new technique of using HAM for solving high-order
non-linear initial value problems (nHAM) by transform the nth-order non-linear differential equation
to a system of n first-order equations. El-Tawil and Huseen!'?! established a method, namely, g-HAM
which is a more general method of HAM. The qg-HAM contains an auxiliary parameter n as well
as h such that the case of n=1 (q-HAM; n=1) the standard HAM can be reached. The q-HAM has
been successfully applied to numerous problems in science and engineering.!'*?? Huseen and Grace!**!
presented modifications of -HAM (mg-HAM). They tested the scheme on two second-order non-
linear exactly solvable differential equations. The aim of this paper is to apply the mq-HAM to obtain
the approximate solutions of high-order non-linear problems by transform the nth-order non-linear
differential equation to a system of n first-order equations. We note that the case of =1 in mq-HAM
(mg-HAM; n=1), the nHAM! can be reached.
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ANALYSIS OF THE Q-HAM
Consider the following non-linear partial differential equation:

Nu(x, =0 (1

Where, N is a non-linear operator, (x, ) denotes independent variables, and u(x, ¢) is an unknown function.
Let us construct the so-called zero-order deformation equation:

(1-nq)L[D(x, t; g)-u, (x, )]=ghH(x, )N[D(x, t; q)] )

where n>1, ge [0,1] denotes the so-called embedded parameter, L is an auxiliary linear operator with
n

the property L[f]=0 when /=0, ##0 is an auxiliary parameter, H(x, f) denotes a non-zero auxiliary function.

. : 1 :
It is obvious that when g=0 and g=— Equation (2) becomes
n

@(x,t;O) =u, (x,t) and @(x,t;lj =u(x,t) 3)
n

respectively. Thus, as g increases from 0 to —, the solution G(x, #, g) varies from the initial guess u (x, ?)
n

to the solution (x, £). We may choose v, (x, ?), L, h, H (x, f) and assume that all of them can be properly

chosen so that the solution J(x, #; ¢) of Equation (2) exists for g€ [0, 1 ].
n

Now, by expanding J(x, #; g) in Taylor series, we have

D(x.t:q) =ty (x,0)+ D, " u, (x,)q" 4
where
1 0"D(x,t;q)
u, (x,f):;!aq—mbzo (5)

Next, we assume that h, H (x, ), u, (x, ), L are properly chosen such that the series (4) converges at

q=l and:
n

(1) = @(x,t;lj oy (5)+ S (x,t)(ljm ©)

We let

u, (x,t) = {uo (x,t),u1 (x,t),u2 (x,t),...,ur (x,t)}

Differentiating equation (2) m times with respect to ¢ and then setting ¢g=0 and dividing the resulting
equation by m! we have the so-called m” order deformation equation

L I:um (x,0)—k,u,_ (x, t):' =hH (x,t) R, (u;_, (x,1)) (7
where,

" NN D (x,t;9) |- f(x,t
R (o) = = (quf” =), ®)
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and

0 m<1
k, = { . )
n  otherwise

It should be emphasized that u _(x, 7) for m>1 is governed by the linear Equation (7) with linear boundary

m

o . . 1
conditions that come from the original problem. Due to the existence of the factor — , more chances for
n

convergence may occur or even much faster convergence can be obtained better than the standard HAM.
It should be noted that the case of n=1 in Equation (2), standard HAM can be reached. The -HAM can
be reformatted as follows:

We rewrite the nonlinear partial differential equation (1) in the form

Lu(x,t)+ Au (x,t)+Bu (x,t) =0

u(x,0)=f0(x),

ou(x,t)

o = (x)- (10)
0 Mu(x,1)
Pt =0y = Sy ()

z

Where, L= (8—) ,z=1,2,... is the highest partial derivative with respect to #, 4 is a linear term, and B is
tZ

non-linear term. The so-called zero-order deformation Equation (2) becomes:

(1-nq) L[ D (x.t:q) —u,(x,1) | = ghH (x,2)(Lu (x,t) + Au(x,t)+ Bu(x,1)) (11)
we have the m" order deformation equation
Llu, (x,t)=k,u, (x.t) |=hH (x.1)(Lu, (x.1)+ Au,_, (x,1)+ Bu,_, (x.1))) (12)
and hence
u, (x,0)=ku,  (x,6)+hL"'[H(x,t)(Lu,_, (x,t)+ Au,_, (x,1)+ B(u,_, (x,1)))] (13)

Now, the inverse operator L! is an integral operator which is given by

L'()= ” .. I(.)dt dt..dt+ct™ +c 2 +.. . +c. (14)

z times

where ¢, c,,..., c_are integral constants.
To solve (10) by means of g-HAM, we choose the initial approximation:

2

uo(x,t):fo(x)+f1(x)t+f2(x)t2—!+...+fzl(x)

tzfl

(z—-1)!

(15)

Let (x, ©)=1, by means of Equations (14) and (15) then Equation (13) becomes

um(x,t):kmumfl(x,l)+h££ £ (azumal—(zx’r)+z4um](x,r)+B(u;nl(x,r)))drdr...dr (16)
T [N

z times
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ou,, (x,7)
Now from times J; L _E ( Py dede...de , we observe that there are repeated computations

z times

in each step which caused more consuming time. To cancel this, we use the following modification to

(16):

u, (xt) =k, ()4 [ [ ] %(Zx’r)drdr...dr+h

z times

[[ [ (du,, (x7)+ B, (x1))drdr...de

z times

=k, u (x,t)+huml(x,t)—h{um1 (x,0)+tauL(x’O)+...+

e ot (z-1)! o ’
wh[ [ ] (4 )+ B, (x,7))drdr...d a
u, x T u, (x,7))drdr...dc
Now, for m=1, k =0 and
2 2 z—1 z-1
uo(x,0)+tau°(x’0)+t—auo(f’o)...+ — uO(_?C’O)
ot 20 o (z-1)! o
2 z-1
:fo(x)+f](x)t+f2(x)%+...+fz_, (x)(Zt_l)! =y (x.1)
Substituting this equality into Equation (17), we obtain
u, (x,t) = h£ E E (Au, ()C,T)+B(u0 (x,r)))dr d?...dr (18)
For m>1, k =n and
2 z—1
u, (10) =0, 2250 o Pa(60) | O a(50)
ot ot ot
Substituting this equality into Equation (17), we obtain
u, (x,t)=(n+h)u,_, (x,t)+h£ J; J; (Au,,_, (x,7)+B(u,_, (x,7))drdr...dr (19)
\—V—J

z times

We observe that the iteration in Equation (19) does not yield repeated terms and is also better than the
iteration in Equation (16).

The standard g-HAM is powerful when z=1, and the series solution expression by g-HAM can be written
in the form

u(x,t;n;h) =U, (x,t;n;h) = Zfoui (x,t;n;h)(lj (20)
= n

However, when z>2, there are too much additional terms where harder computations and more time
consuming are performed. Hence, the closed form solution needs more number of iterations.
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THE PROPOSED MQ-HAM

When z>2, we rewrite Equation (1) as the following system of the first-order differential equations

ut:ul
ul =u2
21)
uiz—1} =Au(x, t)-Bu(x, t)
Set the initial approximation
u, (x, =f, (%),
ul, (x, = (x),
: (22)
uiz=1}, (x, N=Az-1) (x)
Using the iteration formulas (18) and (19) as follows
u,(x,t)=nh £ (—ul0 (x,r))dr,
ul, (x,t)=nh £ (—u20 (x,z'))dr (23)
u{z—1},(x,t)=h J-(Auo (x,r) + B(u, (x,r))) dr
0
For m>1, k =n and
u (x,0)=0,ul (x,0)=0,u2 (x,0)=0,...,uiz—1} (x,0)=0
Substituting in Equation (17), we obtain
u, (x,t) = (n + h)um_1 (x,l) +h ﬂ (—ulm_1 (x,r))dr,
ul, (x,t)=(n+h)ul,  (x1)+h £ (—u2w1 (x,7 )) dt (24)

t

uf{z—-1}, (x,t) = (n + h)u{z -1}, (x,t) +h J.(AMW1 (x,r) +B(u,, (x,f)))dr

0

To illustrate the effectiveness of the proposed mq-HAM, comparison between mq-HAM and the standard
q-HAM is illustrated by the following examples.

ILLUSTRATIVE EXAMPLES®?!

We choose the following two cases when z=2 and z=3.
Case 1. z=2

Consider the modified Boussinesq equation
u~u_— ) =0 (25)

XXXX

subject to the initial conditions
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u (x, 0) = \/Esech[x]

u, (x,0) =v/2sech [x]tanh[x] (26)
The exact solution is
u(x,1) =/2sechx 1] (27)
This problem solved by HAM (q-HAM [r#=1]) and nHAM (mq-HAM [n=1]),") so we will solve it by
g-HAM and mq-HAM and compare the results.

IMPLEMENTATION OF Q-HAM

We choose the initial approximation
u, (x, )=u(x, 0)+u (x, 0)

=+/2sech [x] +#2sech [x] tanh| x| (28)
and the linear operator:
0" D(x,t;
LID(x,:q)] - % (29)
with the property:
L[c +c1t]=0, (30)

where ¢ and ¢, are real constants.
We define the nonlinear operator by

O’D(x,t;q) 0'D(x.t:9) 62

N|D(x,t, = B x,t; 31
According to the zero-order deformation Equation (2) and the mth-order deformation equation (7) with
o’u, , ou,

R(u 1) === =4 (Z Uy D Uity (32)

The solution of the mth-order deformation equatlon (7) for m>1 takes the form
u, (x,t)=k,u,_ 1(x,t)+h”R(u;n_l)dtdt+co +ct (33)

where the coefficients ¢ and ¢, are determined by the initial conditions:
0 ,0

w(xo)=0, et (34)

Obviously, we obtain

ht*Sech[x]*(135(=5 + 56¢*)Cosh[x]—15(19 + 412¢*)Cosh[3x]— 15Cosh[5x] +

1
4 (00)= =500
540¢*Cosh[5x]+15Cosh[7x]—215¢Sinh[x]+
6120#°Sinh[x]—315¢Sinh[3x]—1836¢°Sinh[3x]— 95¢Sinh[5x] +
108#°Sinh[5x]+ 5¢Sinh[7x])
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h(h+n)*Sech[x]  (135(=5+561*)Cosh[x]

1
(1) == 96042
_15(19+ 4124*)Cosh[3x] - 15Cosh[5x] + 540r>Cosh[5x] +15Cosh[ 7x]

—215¢Sinh[x]+ 6120£Sinh[x] - 315:Sinh[3x] - 1836/°Sinh[3x] (34)
—95:Sinh[5x]+ 108 °Sinh[5x] + 5Sinh[7x])

+h(- hiSech[x]" (1+Cosh[2x]+Sinh[2x])’ (1~ 6Cosh[2x]+...

1
160+2

u_(x,t),(m=3,4,...) can be calculated similarly. Then, the series solution expression by q-HAM can be

m

written in the form:

u(x,t;mh)=U,, (x,t;mh) = ZZ@ u, (x,t;n;h)(lj (35)

n

Equation (35) is a family of approximation solutions to the problem (25) in terms of the convergence
parameters h and ». To find the valid region of /, the / curves given by the 3" order g-HAM approximation
at different values of x, ¢, and » are drawn in Figures 1-3. This figure shows the interval of /# which the
value of U, (x, £, n) is constant at certain x, ¢, and n, We choose the line segment nearly parallel to the
horizontal axis as a valid region of h which provides us with a simple way to adjust and control the
convergence region. Figures 4 and 5 show the comparison between U, of g-HAM using different values
of n with the solution (27). The absolute errors of the 3™ order solutions -HAM approximate using
different values of n are shown in Figures 6 and 7.

IMPLEMENTATION OF MQ-HAM

To solve Equation (25) by mq-HAM, we construct system of differential equations as follows
u, (x, )=v(x, 1),

v, (x,1)= ‘ gif’t) +%[u(x,t)]3 (36)

with initial approximations
uy (x,1) = V2sech [x] v (x,1)= J2sech [x]tanh[x] (37)

and the auxiliary linear operators

U3 qHAMXx, 1, n)
15
I LB
-er_’__a——* i
P il
13 - U3qHAM0,01,1)
- U3qHAMO05,02,1)
11 - U3qHAMO06,02,1)
i M A A " A j!
=30 <25 <20 -15-10 -05 00

Figure 1: /1 curve for the (q-HAM; n=1) (HAM) approximation solution U, (x, t; 1) of problem (25) at different values of x
and ¢
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150
145

/’- 1=U
435

|

125

-146-120-100-80 -60 -40-20 0

U3 qgHAMx, ¢, n)

h

= U3qHAMO,0.1,50)
- U3qHAM05,02,50)
- U3qHAMO06,02,50)

Figure 2: / curve for the (q-HAM; n=50) approximation solution U, (x, #; 50) of problem (25) at different values of x and ¢

A i i " " M j!
-300-250 -200 -150-100 =50 O

U3 qHAMx, 1, n)
1.5

- U3qHAMO0,0.1,100)
- U3qHAM05,02,100)
- U3qHAM06,02,100)

Figure 3: / curve for the (q-HAM; n=100) approximation solution U; (x, #; 100) of problem (25) at different values of x

and ¢

- Exact

-+ UzqHAM(n=1)
~ UzqHAM(n=2)
— UzqHAM(n=3)
- U3zqHAM(n=10)
Uz qHAM(n=20)
UzqHAM(n=50)
U3qHAM(n=100)

-04

Figure 4: Comparison between U, of g-HAM (n=1, 2, 5, 10, 20, 50, 100) with exact solution of Equation (25) at x=0 with

h=1, —1.8, =—4.5, (=28, h—15.2, =37, h=70), respectively

Lu (x,t) = aug;, ) ,

and

Au,, | (x,t) =—
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lf?&m — Bt
- .. U3qHAM(n=1)
1.9‘ — L‘3qm1{ﬂ12}
//?y" 05t — U3zqHAM(n=3)
A - UzqHAM(n=10)
-]:.ﬂ - t UzqHAM(n=20)
-05 U3zqHAM(n=50)
U3qHAM(n=100)
-1.0
-15

Figure 5: Comparison between U, of g-HAM (n=1, 2, 5, 10, 20, 50, 100) with exact solution of Equation (25) at x=1 with
(h=1, =1.8, =4.5, =S8, h=—15.2, =37, =70), respectively

AbsoluteError

05 =+ AE(n=l)

0.4 = A.E(n=1)

— A.E{a=5)

03¢ — AE(a=10)

02t A.E(a=20)

A.E(n=50)
01r = AE(a=100)

. . i . i “
=04 =02 02 0.4

Figure 6: The absolute error of U, of -HAM (n=1, 2, 5, 10, 20, 50, 100) for problem (25) at x=0 using (h=—1, h=—1.8
h=4.5, =38, h=—15.2, =37, h=—70), respectively

AbsoluteError
0.020 b -+ AE(a=1)
— AE(a=2)
0015 } — AE(a=5)
— AE(a=10)
0010} A E(a=20)
A E(n=50)
0.005 ¢ - AE(2=100)
= I
-04 =02

Figure 7: The absolute error of U, of g-HAM (n=1, 2, 5, 10, 20, 50, 100) for problem (25) at x=1 using (h=1, h=—1.8
h=-4.5, =8, h=—15.2, =37, h=70), respectively

0’ m-
Bu;, , (x,1)= _G)C_Z(Zizol i (60D () u,(x,1) (39)
From Equations (23) and (24) we obtain:
u, (x,1) h£ vo xr))dr (40)
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(x.1) hg[ T _aa;(uo(x,f)f}df.

Now, form >2, we get

um(x,t)=(n+h) xt +hJ; xr))dr (41)

v, (x,1) =(n+h)vm_1(x,t)+h](— 84uma_1£x,r) o (mZium i(x, T)Zu x,7)u,_;(x, T))j
J x

And the following results are obtained
u, (x,1) = —2hrSech[x]Tanh[x]

v, (x,#) = ht(/2Sech[x]’ —+/2Sech[x]Tanh[x]*)

h*t* (=3 + Cosh[2x])Sech[x]’

u, (x,t): 2\/5

_ W’ (—11+ Cosh[2x])Sech[x]’ Tanh[x]

V, (x,t)— 2\/5

—2h(h + n)tSech[x]Tanh[x]

+ h(h+n)t(N2Sech[x] —+/2Sech[x]Tanh[x]")

u, (x, 1), (m=3,4,...) can be calculated similarly. Then, the series solution expression by mq- HAM can
be written in the form:

u(x,t;n;h) ~U,, (x,t; n;h) = Zfo u, (x,t;n;h)(lj (42)
= n

Equation (42) is a family of approximation solutions to the problem (25) in terms of the convergence
parameters h and . To find the valid region of 4, the / curves given by the 3™ order mq-HAM approximation
at different values of x, ¢, and »n are drawn in Figures 8-10. This figure shows the interval of 4 which
the value of U, (x, ¢, n) is constant at certain x, 7, and n. We choose the line segment nearly parallel to
the horizontal axis as a valid region of h which provides us with a simple way to adjust and control the
convergence region. Figure 11 shows the comparison between U, of mq-HAM using different values
of n with the solution (27). The absolute errors of the 3™ order solutions mqg-HAM approximate using
different values of n are shown in Figure 12. The results obtained by mq-HAM are more accurate than

U5 sqgHAM(x, £, n)
18
17
16

q
12 = U3mgHAM(0,01,1)
re - U3ngHAM(05,02,1)
13 | - U3ngHAM(06,02,1)
i . . : h
=20 -15 -10 -05 00

Figure 8: /i curve for the (mq-HAM; n=1) approximation solution U; (x, #; 1) of problem (25) at different values of x and ¢
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g-HAM at different values of x and n, so the results indicate that the speed of convergence for mqg-HAM
with #n>1 is faster in comparison with n=1 (nHAM). The results show that the convergence region of
series solutions obtained by mq-HAM is increasing as ¢ is decreased, as shown in Figures 11 and 12.
By increasing the number of iterations by mq-HAM, the series solution becomes more accurate, more
efficient and the interval of ¢ (convergent region) increases, as shown in Figures 13-20.

Case 2. z=3

Consider the non-linear initial value problem:

u, (x,0)+u, (x,1)- 2x(u (x,t))2 + 6(u (x,t))4 =0 (43)

Uz mgHAM(x, 1, n)
18
17

. U3mHAM(©,01,50)
- U3mHAM(05,02,50)
- U3mqHAM(06,02,50)

. h
-100 -8 -60 -40 -20 O

Figure 9: /1 curve for the (mq-HAM; n=50) approximation solution U, (x, ¢; 50) of problem (25) at different values of x

and ¢
U3 mpHAM(x, £, n)

18

1.7

16

15 -

- L3mHAMI(0,0.1,100)

i= - U3mHAM(05,0.2,100)

3 - U3mgHAM(06,0.2,100)
Sttt 9 ero h
=200 -150 -100 =30 0

Figure 10: / curve for the (mg-HAM; n=100) approximation solution U, (x, #; 100) of problem (25) at different values of x
and ¢

:_‘dutinm - Exct
- ~ UzmgHAM (n=1)
18 — U3nqHAM (n=2)
16 - UsnqHAM (n=5)
e - UzmHAM (n=10)
2} UzmmHAM (n=20)
10} U3anA.\I (n=50)
0s } . ":"3.31111'1-'\:\1 (a=100

=10 =035 05 10 r

Figure 11: Comparison between U, (x, 1) of mq-HAM (»=1, 2, 5, 10, 20, 50, 100) with exact solution of Equation (25) at
x=0 with (=1, h=1.8, h=—4.5, =38, h=15.2, =37, h=70), respectively
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Absoluote Emor = A Em=1)
E,i 13t — A.Ein=2)
!-'.“ 10} — A.Efn=5)
ost — A.E@n=10)
Gt A.Ein=20)
- — A.E(n=50)
- — A.E(n=100)
i L
-15 =10 -05 05 10 15

Figure 12: The absolute error of U, of mq-HAM (n=1, 2, 5, 10, 20, 50, 100) for problem (25) at x=0 using (h=—1, h=1.8,
h=4.5, =S8, h=—15.2, =37, h=70), respectively

solutions
. 22 .
: 20 '
v 18 . — Exct
L 16 : v+ UzqHAM(n=1)

— UzmHAM(n=1)
~ o N2 - UsomHAM(a=)
: J : i &

10  -05 0.5 10

Figure 13: The comparison between the U, (x, 7) of -HAM (n=1), U, (x, 1) of mq-HAM (n=1), U (x, #) of mq-HAM (n=1),
and the exact solution of Equation (25) at /=1 and x=0

solutions
15
10 " "
>c/’4/ : ' — Bt
+ 05 .
- : . -« UzqHAM(n=1)
3 5 s t
-15 =10 —0505 03 10 15 — UzmHAM(n=1)
I . = UsmmHAM(n=1)
fewof
v 15 -

Figure 14: The comparison between the U, (x, 1) of ¢-HAM (n=1), U, (x, {) of mq-HAM (n=1), U, (x, 1) of mq-HAM (n=1),
and the exact solution of Equation (25) at #/=1 and x=1

Subject to the initial conditions

1 1
(50) =5t (:0) ==, (x,0) == )

The exact solution is

u (x,t) = 21 (45)
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= .

solutions
; 18} -
% b — Exact
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— UzmHAM (2=100)
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Figure 15: The comparison between the U, (x, #) of -HAM (n=100), U, (x, ¢) of mq-HAM (n=100), U, (x, ) of mq-HAM

(n=100), and the exact solution of Equation (25) at /=70 and x=0
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Figure 16: The comparison between the U, (x, £) of ¢-HAM (n=100), U, (x, ¢) of mq-HAM (»=100), U (x, t) of mg-HAM

(n=100), and the exact solution of Equation (25) at /=70 and x=1
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Figure 17: The comparison between the absolute error of U, (x, £) of g-HAM (n=1) and U (x, ¢) of mq-HAM (n=1) of

Equation (25) at h=—1, x=0 and-1<<1

This problem solved by HAM (q-HAM (n=1)) and nHAM (mq-HAM (n=1)),!” so we will solve it by

g-HAM and mq-HAM and compare the results.

IMPLEMENTATION OF Q-HAM

We choose the initial approximation

Uy (x,1)=-—-—-—
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Figure 18: The comparison between the absolute error of U, (x, #) of -HAM (n=100) and U, (x, #) of mq-HAM (n=100) of
Equation (25) at /=70, x=0 and —1<¢<1
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Figure 19: The comparison between the absolute error of U, (x, #) of mq-HAM (n=1) and U; (x, 1) of mq-HAM (n=1) of
Equation (25) at /=1, x=1 and —1.5<¢<1.5
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Figure 20: The comparison between the absolute error of U, (x, #) of mq-HAM (n=100) and U; (x, ¢) of mq-HAM (n=100)
of Equation (25) at /=70, x=1 and —1.5<¢<1.5

and the linear operator:

D (x,t;
1@ (vtiq)) = T2t @7)
with the property:
L, +ct+ct’ |=0 (48)

where ¢, ¢, and ¢, are real constants.
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Next, we define the nonlinear operator by

N[@(x . q)] o’ @((9);31 q) 8@()6 t,q)

According to the zero-order deformation Equatlon (2) and the m™-order deformation equation (7) with

0’ d - _
R(u;n—l):%-i_%_zxzizol iU 1+6Z U, i ;Z ui—jzzzo U, (50)

The solution of the m"-order deformation equation (7) for m>1 becomes:

-2x[D(x,1;9)F +6[D(x,1;9)]* (49)

u,, (x,6) =k, (x,0)+h [ [ [R(w,, ) )t dt e +c, + e+, (51)
where the coefficients ¢, ¢, and ¢, are determined by the initial conditions:
0 ,0 0’ ,0
u, (x,0)=0, 1, (%.0) o &, (%0) (52)
ot ot

We now successively obtain:

u, (x,1)= LN (147° +77¢7x* +275¢°x" + 6601°x°
2310x™

+2310¢%x" +23106x™ +2310x"° =226 x* (=57 + x°) = 77£'x'° (=24 + x°))

u, (x,t) =————hnt’ (146* + 77¢'x* + 275¢t°x* + 6601 x° +
2310x*

2310£2%"2 + 23106 + 2310x" — 22¢*x* (=57 + x°) — 7763% (=24 + x°))
1

 24443218800x"

1272889807 x° +10475665200¢° x> —

R (5197927 +5197920¢'°x* +306033007° x* +

u, (x,1),(m=3,4,...) can be calculated similarly. Then, the series solution expression by - HAM can be
written in the form:

u(x,t;mh)=U,, (x,t;mh)= Zfo u, (x,t;n;h)(l) (53)
- n

Equation (53) is a family of approximation solutions to the problem (43) in terms of the convergence parameters
h and #. To find the valid region of 4, the / curves given by the 5™ order g-HAM approximation at different
values of x, ¢, and n are drawn in Figures 21-23. This figure shows the interval of /# which the value of U,
(x, t; m) 1s constant at certain x, ¢ and n. We choose the line segment nearly parallel to the horizontal axis as a
valid region of h which provides us with a simple way to adjust and control the convergence region. Figure 24
shows the comparison between U, of q-HAM using different values of n with the solution 45. The absolute
errors of the 5 order solutions -HAM approximate using different values of n are shown in Figure 25.

IMPLEMENTATION OF MQ-HAM

To solve Equation (43) by mq-HAM, we construct system of differential equations as follows
u, (x, )=v(x, 1),
v, (x, )=w(x, 1) (34)

With initial approximations

1 1 2
u, (x,t)z—?, vo(x,t):—?, wo(x,t)=—F (55)
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Us qHAMx, ¢, n)

el
-030}

=032}
at — TsqHAM225,15,1)

/, 034 _ UsqHAM2,L,1)
75 -20 -15 -10 -05

Figure 21: / curve for the (q-HAM; n=1) (HAM) approximation solution U, (x, ¢, 1) of problem (43) at different values of
xand ¢

Us GHANI(x. £ %)

ol

—

=032t
5:: - UsHAMQ25,15.20)
= - UsqHAMQ.120)
A L
=50 -4 —3 =10
Figure 22: h curve for the (q-HAM; n=20) approximation solution U, (x, ¢; 20) of problem (43) at different values of x
and ¢
Us gHAMx 1, n)
420}
/ =030
=032 ¢
== — UsqHAM225,13,100)
= - UsqHAM?2,1,100)
n
-250 -200 -150 -100 -50
Figure 23: /i curve for the (q-HAM; #n=100) approximation solution U (x, #; 100) of problem (43) at different values of x
and ¢
And the auxiliary linear operators
ou(x,t) ov(x,t) ow(x,t)
Lu(x,t)=——=, Lv(x,t)=———, Lw(x,t)=————= 56
( ) ot ( ) ot ( ) ot (56)
And
ou, (x,t)

Au,, | (x,t) = ;3x
Bu,_ —-2XZ Uithy, 1 z+6Z U1 zZ ”t—jZi:o Uty (57)
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solutions — s
- -+ UsqHAM(n=1)
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Figure 24: Comparison between U, of -HAM (n=1, 2, 5, 10, 20, 50, 100) with exact solution of Equation (43) at x=4 with
(h=1, =1.97, =—4.83, =38.45, h=18.3, h=—44.75, =186), respectively

Absolute Error
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Figure 25: The absolute error of U, of g-HAM (n=1, 2, 5, 10, 20, 50, 100) for problem (43) at x=4 using h=—1, h=—1.97,
h=4.83, h=38.45, =18.3, h=—44.75, h=286), respectively

From Equations (23) and (24) we obtain

u, (x,1) h£ (- (x.7))dr

w(nt)=h{ (-w(xr))de (58)
w(x,t)= h(}(%— 2x(u0 (x,r))2 + 6(140 (x,r))qdr
For m>2,
u, (x,t)=(n+h)u, (x1 +h£ x’L‘))dT
v, (1) =(n+ k), (x0)+h[ (-w,, (x.7))de (59)

w, (x5,0) = (n+h)w, , (x.0)+h [
m—1
[aum l(x t) 2’ Zuzumll+6zumllzutjzuk jk}
The following results are obtained
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2
%(nOZ_ht h(h+n)t

e Wt hot? h’t? h h+n)t
i (5,0) === 4 - (it mt,

u (x,1),(m=4,5,...) can be calculated similarly. Then, the series solution expression by mq-HAM can
be written in the form:

x

u(x,t;mh)=U,, (x,t;nh) = Zfo u, (x,t;n;h)(lj (60)
- n

Equation (60) is a family of approximation solutions to the problem (43) in terms of the convergence
parameters h and . To find the valid region of h, the h curves given by the 5" order mq-HAM approximation
at different values of x, ¢, and n are drawn in Figures 26-28. This figure shows the interval of 4 which
the value of U (x, ¢, n) is constant at certain x, 7, and n. We choose the line segment nearly parallel to
the horizontal axis as a valid region of h which provides us with a simple way to adjust and control the
convergence region. Figure 29 shows the comparison between U, of mq-HAM using different values
of n with the solution (45). The absolute errors of the 5™ order solutions mq-HAM approximate using
different values of n are shown in Figure 30. The results obtained by mq-HAM are more accurate than
g-HAM at different values of x and », so the results indicate that the speed of convergence for mq-HAM
with n>1 is faster in comparison with n=1. (nHAM). The results show that the convergence region
of series solutions obtained by mg-HAM is increasing as ¢ is decreased, as shown in Figures 29-36.

Us ngHAM(x, 1, 2

-02

24

f/’ 0261
f/'-‘_ - . i
-:j}/;:ﬂ -15 =10 =05

Figure 26: / curve for the (mq-HAM; n=1) approximation solution U (x, #; 1) of problem (43) at different values of x and ¢

- UsmqHAM2,02,1)
- UsmgHAMR2,08.1)

Us mHAM(x, 1, n)

/
=027¢%

/—/_g,{
-%q)/-Jo -30 =20 -10

Figure 27: /i curve for the (mq-HAM; n=20) approximation solution Uj (x, #; 20) of problem (43) at different values of x
and ¢

- UsmHAMQ,02,20)
- UsmHAMQ2,08.20)
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By increasing the number of iterations by mq-HAM, the series solution becomes more accurate, more
efficient and the interval of ¢ (convergent region) increases, as shown in Figures 31-36.

Us mHAM(x, 1, n)

= UsmHAMQ,02,100)
- UsmgHAM(2,08,100)

/
-25‘6/-200 ~150 -100 =50

Figure 28: /1 curve for the (mq-HAM; n=100) approximation solution U (x, #; 100) of problem (43) at different values of x
and ¢
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— UsngHAM (n=30)
- UsnmqHAM (n=100)

solutions

Figure 29: Comparison between U, of mq-HAM (n=1, 2, 5, 10, 20, 50, 100) with exact solution of Equation (43) at x=4
with (h=1, h=—1.97, h=4.83, h=9.45, h=18.3, h=—44.75, h=286), respectively
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Figure 30: The absolute error of U, of mq-HAM (n=1, 2, 5, 10, 20, 50, 100) for problem (43) at x=4, —20</<5 using h=-1,
h=—1.97, =—4.83, h=9.45, h=18.3, h=—44.75, h=—86), respectively
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solutions
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Figure 31: The comparison between the U, (x, ¢) of ¢-HAM (n=1), U, (x, {) of mq-HAM (n=1), U (x, {) of mq-HAM (n=1),
U, (x, t) of mq-HAM (n=1), and the exact solution of Equation (43) at /=1 and x=4
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Figure 32: The comparison between the U, (x, #) of ¢-HAM (n=20), U, (x, {) of mq-HAM (n=20), U, (x, t) of mq-HAM
(n=20), U, (x, 1) of mg-HAM (n=20), and the exact solution of Equation (43) at /=—18.3 and x=4

solubions
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Figure 33: The comparison between the U (x, #) of -HAM (n=100), U, (x, ¢) of mq-HAM (n=100), U, (x, ¢) of mq-HAM
(n=100), U, (x, £) of mq-HAM (n=100), and the exact solution of (43) at /=86 and x=4
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Figure 34: The comparison between the absolute error of U (x, ¢) of g-HAM (n=1), U, (x, t) of mq-HAM (n=1), U, (x, t) of
mg-HAM (n=1), and U, (x, t) of mg-HAM (n=1) of Equation (43) at /=1, x=4 and —15<t<2
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AbsoluteError
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A E ymHAM (n=20)
!
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Figure 35: The comparison between the absolute error of U, (x, #) of ¢-HAM (n=20), U, (x, {) of mq-HAM (n=20), U (x, 1)
of mg-HAM (n=20), and U, (x, ¢) of mq-HAM (n=20) of Equation (43) at /=—18.3, x=4 and —15<¢<2

AbsoluteEror
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Figure 36: The comparison between the absolute error of U, (x, ¢) of ¢-HAM (n=100), U, (x, ¢) of mq-HAM (n=100),
U (x, t) of mq-HAM (n=100), and U, (x, 1) of mg-HAM (#=100) of Equation (43) at /=86, x=4 and —15</=<2

CONCLUSION

A mqg-HAM was proposed. This method provides an approximate solution by rewriting the nth-order
non-linear differential equation in the form of » first-order differential equations. The solution of these n
differential equations is obtained as a power series solution. It was shown from the illustrative examples
that the mq-HAM improves the performance of ¢-HAM and nHAM.
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