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ABSTRACT
It is obvious that the inverse function theorem holds in the Banach space for R . In my paper on the 
generalized inverse function theorem, it was observed that the inverse function theorem also holds for 
Rn . However, in this paper, I attempted to establish that it holds in the unitary space and consequently 
can be extended to Cn ; the generalized unitary space.
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THE INVERSE FUNCTION THEOREM 
IN R

A function F  could fail to be one to one but may 
be so on a subset S  of DF  and by this we mean 
that F X1( )  and F X 2( )  are distinct, whenever 
X1

 and X 2  are distinct points of S . Hence, F  
is not invertible but when FS  is defined on S  by 
F X F X X Ss ( ) = ( ) ∈,� , and left undefined for 
X S∉  then Fs  is invertible. We say that Fs  is the 
restriction of F  to S  and that Fs

−1  is the inverse of 
F  restricted to S . The domain of Fs

−1  is F S( ) . If 
F  is one to one on a neighborhood of X

0
,  we say 

that F  is locally invertible on X 0  and if this true 
for every X 0

 in a set S , we say that F  is locally 
invertible on S .

Definition 1.1: [Riez [8]], [Williams[10]] A 
function F R Rn n: →  is regular on an open set S  
if F  is one to one and continuously differentiable 
on S  and JF X( ) ≠ 0 , if X S∈ . Also we may say 
that F  is regular on an arbitrary set S  if F  is 
regular on an open set containing S .

Theorem 1.1: [Athanassius[1]], [Erwin[6]] Suppose 
that F R Rn n: �→ is regular on an open set S , and 
let G Fs= −1  then F S( )  is open, G  is continuously 
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differentiable on F S( )  and ′ ( ) = ′ ( )−G U F X 1 , 
where U F X= ( ).
Moreover, since G  is one to one on F S( ) ,  G  is 
regular on F S( ) .
Definition 1.2: If F  is regular on an open set S , we 
say that Fs

−1 is a branch of F −1
.  Hence, it is possible 

to better define a branch of F −1  on a set T R F⊂ ( )  
if and only if T F S= ( )  where F  is regular on S. 
Note that any subset of R F( )  that does not have this 
property cannot have a branch of F −1  defined on 
them.
Theorem 1.2 (the inverse function theorem)
[Athanassius[1]], [Erwin[6]]: Let F R Rn n: �→
be continuously differentiable on an open set 
S  and suppose that JF X( ) ≠ 0  on S . Then, if 
X S0 ∈ , there is an open neighborhood N  of 
X 0  on which F  is regular. Moreover, F N( )  is 
open and G FN= −1  is continuously differentiable 
on F N( )  with ′ ( ) = ′ ( ) 

−
G U F X

1
 (where 

U F X U F N= ( ) ∈ ( ), ).

Corollary 1.3: If F  is continuously differentiable 
on a neighborhood of X 0  and JF X 0 0( ) ≠ , then 
there is an open neighborhood N  of X 0  on 
which the conclusion of theorem 1.2 holds. 

THE INVERSE FUNCTION THEOREM 
ON THE UNITARY SPACE

Here, we discuss the inverse function theorem 
in a plane other than the reals and in precise the 
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unitary space Cn . As preliminary in this section, 
we introduce the following concepts. 

Local invertibility

A complex function F  is one to one only on a 
subset S  of DF  where DF  is complex points. 
This in general may fail but that the assertion 
holds means that F Z1( )  and F Z2( )  are distinct, 
whenever Z1  and Z2  are distinct points of S  so 
that F  is not invertible except if Fs  is defined on 
S  by F Z F Z Z Ss ( ) = ( ) ∈,� ,

Then, Fs �  is invertible. On the other hand, Fs  is the 
restriction of F  to S  and Fs

−1  is the inverse of F  
restricted to S  and the domain of Fs

−1  is F S( ). If F  
is one to one on a neighborhood of Z

0
,  we say that 

F  is locally invertible at Z
0
.  If this is true for every 

Z0  in a set S , then F  is locally invertible on S .

Regular invertible functions

Definition 2.2.1: A complex function F C Cn n: →  
is regular on an open set S  and let G Fs= −1. Then, 
F S( )  is open, G  is continuously differentiable on 
F S( )  and G U F z( ) = ( )( )−1

, where U F Z= ( ).  
Moreover, since G  is one to one on F S( ) , G  is 
regular on F S( ).
Definition 2.2.2: We say that Fs

−1  is a branch of 
F −1  if F  is regular on an open set S . More so, 
this definition implies that Fs

−1  is a branch of F −1  
on a set T C F⊂ ( )  if and only if T F S= ( ) , where 
F  is regular on S . Note that any open subset of 
C F( )  that does not have this property cannot be 
said to have a branch defined on it.
Theorem 2.2 (the inverse function theorem): Let 
F C Cn n: →  be continuously differentiable on an 
open set S  and suppose that JF Z( ) ≠ 0  on S . 
Then, if Z S

0
∈ ,  then there is an open neighborhood 

N  of Z0  on which F  is regular. More so, F N( )  is 
open and G FN= −1  is continuously differentiable 

on F N( ) , with ′ ( ) = ′ ( ) 
−

G N F z
1
 (where 

U F Z= ( )) , U F N∈ ( ).
Corollary 2.2.3: If F  is continuously differentiable 
on a neighborhood of Z0  and JF Z

0
0( ) ≠ ,  then 

there is an open neighborhood N  of Z0  on which 
the conclusion of theorem 2.2 holds.

GENERALIZED INVERSE FUNCTION 
THEOREM IN THE UNITARY SPACE

Generalized local invertibility

A set of complex functions Fi  are/is one to one 
only on a subset S  of DFi  where DFi  is complex 
points. This in general may fail but that the 
assertion holds mean that F zi 1( )  and F zi 2( )  are 
distinct points of S  so that F si

′  is not invertible 
except Fis  is defined on S  by F z F zi i i is

( ) = ( ) , 
z Si ∈  and left undefined for z Si ∈  and then Fis  
is invertible.
On the other hand, Fis  is restrictions of Fi  to S  
and Fis

−1 is the inverses of F si
′  restricted to S  

and the domain of Fis
−1  is F S( ).  If F si

′  is one to 
one z0 � neighborhoods, we say that F si

′  is locally 
invertible each at z0 . If this is true for every z0  in 
a set S , then F si

′  is locally invertible on S .

Generalized regular invertible functions

Definition 3.2.1: Complex functions F C Ci
n n: →  

are each regular on an open set S  and J F zi i i( ) ≠ 0  
if z Si ∈ .  We also say that Fi

s  is each regular on an 
arbitrary set S  if F i s_ ^{'}  is regular on an open 
set containing S .

Theorem 3.2.1. Suppose that F C Ci
n n: →  

are regular on an open set S  and if G Fi is
= −1

,  
then F Si ( )  is open and G si

′  is continuously 
differentiable on F Si ( )  while G U F zi i i( ) = ( )( )−1 , 
where U F zi i i= ( ) . Moreover, since G si

′  is one to 
one on F Si ( ) ,  G si

′  irregular on F Si ( ). \\

Definition 3.2: We say that Fis
−1  is branches of 

Fi
−1  if Fi  is regular on an open set S . More so, 

this definition implies that F si
′  is branches of Fi

−1  
on a T R Fi i⊂ ( ) if and only if T F Si i= ( ) , where 
F si

′  is regular on S . Note that any open subsets 
of R Fi( )  that do not have this property cannot be 
said to have branches defined on them.
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MAIN RESULTS

Theorem 3.2 [the generalized inverse function 
theorem in the unitary space]

Let F C Ci
n n: →  be a set of continuously 

differentiable functions on an open set S . Suppose 
that each J F zi i i( ) ≠ 0  on S . Then, if z Si ∈ ,  there 
are open neighborhoods Ni  of zi  on which F si

′  is 
regular. More so, F Ni i( )  is each open with

F N F Ni i
j

n

( ) =
=

{ ( )}
1



and

G G F Fi
i

n

i
i

n

NNi
= { } = =

= =

−

1 1

1

 

{ }

Continuously differentiable on { }F Ni i
i

n

( )
=1


 such 

that ′ ( ) = =




= =

−

G N G N F zi i
i

n

i i
i

n

{ ( )} { ( )}
1 1

1

 

.

where U F z U F Ni
i

n

i i
i

n

i
i

n

i i
i

n

= = = =

= ( ) ∈
1 1 1 1

   

, ( ).

Proof: First, we show that if X S
0
∈ ,  then a 

neighborhood of F Xi
i

n

0

1

( )
=


is in F Si
i

n

( )
=1


. This 

implies that F Si
i

n

( )
=1


is open.

Since S  is open, there is a i
i

n

>
=

0
1


such that 

B X Si
i

n

i 0

1

( ) ⊂
=


. Let Bi
i

n

=1
  be the boundary of 

B Xi
i

n

i 0

1

( )
=

,
  thus

B B X X X p pi
i

n

i i
i

n

i
i

n

i

n

= = { } − = =
= = ==1

0

1 11

  

 (3.1)
The functions

 = ( ) = ( )− ( )
= =

i i
i

n

i i
i

n

iX F X F X
1 1

0 

are continuous on S  and therefore on Bi
i

n

=1


 

which is compact. Hence, there is a point Xi
i

n

=1


 

in Bi
i

n

=1


 where  i i
i

n

X( )
=1
  attain its minimum 

value say, mi
i

n

=1


 on Bi
i

n

=1


 Moreover, mi
i

n

>
=

0
1



 

since Zi
i

n

≠
=

0
1

  each Fi
i

n

=1


is one to one on S . 

Therefore, F Z F Z mi
i

n

i
i

n

( ) − ( ) ≥ >
= =

0

1 1

0
 

 if 

Z Zi
i

n

i
i

n

− =
= =

0

1 1

 


 (3.2)

The set

UU F Z m
i i i

i

i

n

− ( ) ≤





=

0

1 2


is a neighborhood of F Zi
i

n

0

1

( )
=


.

We will show that it is a subset of F Si
i

n

( )
=1


. To 

see this, let Ui
i

n

=1


 be a set of fixed points in this 
set. Thus,

U F Z m
i i i

i

n
i

i

n

− ( ) <
= =1 1 2
 

 (3.3)
Consider the function

 i i
i

n

i i i
i

n

Z U F Z( ) = − ( )
= =1

2

1

 

which is continuous on S . Note that  i
i

n
i

i

n m
= =

≥
1 1 4
   

if

Z Zi
i

n

i
i

n

− =
= =

0

1 1

 


 

Since if Z Zi
i

n

i
i

n

− =
= =

0

1 1

 

 , then

U F Z U F Z
F Z

F Z

F X

i i i
i

n

i i
i

i ii

n

i

− ( ) = − ( )( ) + ( )
− ( )










≥ ( )

= =1

0

0

1

0

 

−− ( )− − ( ) ≥

−




=

==

= =

F X U F X

m m m

i i i i
i

n

i

n

i
i

i

n
i

i

n

0

11

1 12 2



 

that is, from Equations (3.2) and (3.3).

Since  i
i

n

=1
  is continuous on S ,  i

i

n

=1


 attains a 

minimum value   on the compact set B Z 0( )  that 

is there are Zi  in B Z 0( )  such that

σ σ µ ρi i
i

n

i i
i

n

i
i

n

Z Z Z B Z( ) ≥ ( ) = ∈ ( )
= = =1 1

0

1

  

,

 
(3.4)
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Setting

Z Zi
i

n

=
=

0

1

,


We conclude from Equation (3.3) that

σ µ σi
i

n

i
i

i

n

i

n

Z Z m( ) = ≤ ( ) <
= ==1

0

11 4
 

Because of Equations (3.1) and (3.4), this rules out 

the possibility that Z Bi
i

n

∈
=

,
1



 so Z B Zi
i

n

∈ ( )
=

 0

1

 .

Now, we want to show that 0; =  that is 

U F Zi
i

n

i i
i

n

= =

= ( )
1 1
 

To this end, we note that  i i
i

n

Z( )
=1


 can be written 
as

 i i

n

i
i j i j i

i

n

Z U f Z( ) = − ( )∑
== 1

2

1

( )
, ,

So  i
i

n

=1
  is differentiable on B Z 0( ) . Therefore, 

the first partial derivatives of  i
i

n

=1
  are all zero at 

the local minimum point Zi
i

n

=1


, so

∑
=

∂ ( )
∂

− ( )( ) = ≤ ≤
n

i

i j

i j
i j i j

f Z
x

U f Z i n
1

0 1
.

,

, ,
for

or in matrix form

F Z U F Zi i i i i
i

n
′

=

− ( )( ) =( ) 0
1



Since F Zi i
i

n
′

=
( )

1
  is non-singular, this implies that 

U F Zi
i

n

i i
i

n

= =

= ( )
1 1
 

Thus, we have shown that every U  that satisfies 

(3.3) is in F Si
i

n

( )
=1


 is open.

Next, we show that Gi
i

n

=1


 is continuous on 

F Si
i

n

( )
=1
 and Z0 is the unique point in S  such that 

F Z Ui
i

n

0 0

1

( ) =
=


. Since F Zi
i

n
′

=
( )0

1


 is invertible, 

there exists i > 0  and an open neighborhood 

N
i

n

=1
  of Z0  such that N S

i

n

⊂
=1
  and

F Z F Z Z Z Z Ni i i
i

n

i i
i

n

i
i

n

i
i

n

( ) − ( ) ≥ − ∈
= = = =

0

1

0

1 1 1

   

 if

 (3.5)

Since Fi
i

n

=1
  satisfies the hypothesis of the 

present theorem on Ni
i

n

=1
 , the first part of 

this proof shows that F Ni i
i

n

( )
=1
  is an open set 

containing U F Zi i
i

n

= ( )
=

0

1



. Therefore, there is 

a  > 0 such that Z G Ui
i

n

i i
i

n

= =

= ( )
1 1
   is in Ni

i

n

=1


if U B Ui
i

n

∈ ( )
=

 0

1

 . Setting Z G Ui
i

n

i i
i

n

= ( )
= =1 1
   and 

Z G Ui
i

n

0 0

1

= ( )
=
  in Equation (3.5), yields

 

F G U F G U
G U

G U

U B U

i i i i i
i

n
i i i

ii

n

i

( )( ) − ( )( ) ≥ ( )
− ( )

∈

= =
0

1 01

0

 

λ

δ

�

 if (( )
=i

n

1



Since F G U Ui i i
i

n

i
i

n

( )( )  =
= =1 1
 

, this can be written 
as

G U G U U Ui i i i
i

n

i

n

( ) − ( ) ≤ −
==

0 0

11

1



If

U B Ui
i

n

∈ ( )
=

 0

1

  (3.6)

which means that Gi
i

n

=1


 is continuous at U0
. Since 

U0  is an arbitrary point in F Si
i

n

( )
=1


, it follows 

that Gi
i

n

=1


 is continuous on F S
i

n

( )
=1


. We will 

now show that Gi
i

n

=1
  is different at U0 .

Since

G F Z Z Z Si i i
i

n

i i
i

n

( )( )  = ∈
= =1 1

 

,

The chain rule implies that if Gi
i

n

=1


 is differentiable 
at U0 , then
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′( ) ′( ) =
=

G U F Z Ii
i

n

i
1

0 0

Therefore, if Gi
i

n

=1


 is differentiable at U0 , the 

differentiable matrix of Gi
i

n

=1


 must be

′( ) =
=

−

=

G U F Xi
i

n

i
i

n

1

0 0

1

1

 

[ ( )]

So to show that Gi
i

n

=1


 is differentiable at U0 , we 

must show that if

H U

G U

G U F Z U U

i i
i

n

i i

i o i i
i

n

i

n

i

( )

=

( )

− ( )− ( )  −( )

=

−

===

1

0

1

0

111





nn

i

n

i
i

n

U U







=

=

−[ ]

1

0

1

For

U Ui
i

n

≠
=

0

1

  (3.7)

Then,

lim
U U i i

i

n

i

H U
→ =

( ) =
0

0

1

  (3.8)

Since Fi
i

n

=1


 is one to one on S  and 

F G U Ui i i
i

n

i
i

n
′

= =
( )( ) =

1 1

 

,  it follows that U Ui
i

n

≠
=

0

1



,  

then G U G Ui i
i

n

i
i

n

( ) ≠ ( )
= =1

0

1

 

.  Therefore, we can 

multiply the numerator and denominator of 

Equation (3.7) by G U G Ui i i
i

n

( ) − ( )
=

0

1

  to obtain

 

H U
G U G U

U U

G U G U
F Z

i i
i

n i i i o
i

n

i
i

n

i i i o

i

( ) =
( )− ( )

−

( )− ( )−

=

=

=

1

1

0

1

0







(( ) 

−( )

( ) − ( )








−

=

===

=

1

0

1

111

1

U U

G U G U

i
i

n

i

n

i

n

i

n

i i i o
i

n



























=
( )− ( )

−
( ) 

−( )− ′( )

=

=

−
G U G U

U U
F Z

U U F Z G

i i i o
i

n

i
i

n i

i i i

1

0

1

0

1

0 0





UU G

G U G U

Ui i
i

n

i

n

i i i o
i

n

( )( ) − ( )

( ) − ( )

















==

=

0

11

1





If 0
0

1

< − <
=

U Ui
i

n




. Because of Equation (3.6), 

this implies

H U

F Z

U U F Z G U

Gi i
i

n

i

i
i

n

i i i

i( ) ≤

( ) 

−( ) − ′( ) ( )( )

−
=

−

=

1

1

0

1

0

1

0

1





λ

UU

G U G U

i

n

i i i
i

n
i

n

0

1

0

1

1

( )

( ) − ( )
=

=

=






If 

U Ui
i

n

− <
=

0

1




Now let

H U

U U
X

G U G U

G U

F

i j i
i

n
i

i i ii

n

i

n

i i

i

, ( ) =
−( )− ( )

( ) − ( )( )
′

=

==

1

0

0

0
11





(( ) − ( )
=

G Ui
i

n

0

1



To complete the proof of Equation (3.8), we 

must show that lim ,U U i j i
i

H U
→

( ) =
0

0 . Since Fi
i

n

=1
  is 

differentiable at Z0  we know that if

H Z H U

F
F Z

F Z

i k i
i

n

Z Z i j i
i

n

i
i

i

i

i

i,

lim

,( ) = ( )

=

( )−
( )

− ′
( )

=
→

=

=

1 1

0

1

0
 

nn

i

n

i

n

i

n

Z Z Z

Z Z







0 011

1

0

( ) −( )

−

==

=  
(3.9)
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Then,

lim
,Z Z i k i

i

H Z
→

( ) =
0

0

 

Since F G U Ui i i
i

n

i
i

n

( ( ) =
= =1 1

 
 and

Z G Ui
i

n

0 0

1

= ( )
=


H U H G Ui j i
i

n

i k i i
i

n

, ,( )( ) = ( )( )( )
= =1 1

 

Now, suppose for ε δ ε> ∃ > ( ) <
=

0 0
1

, ,
,j i k i

i

n

H Z


 
if 

0
0

1

0

1

< − = − ( ) <
= =

Z X Z G Ui
i

n

i i j
i

n

 


 

Since Gi
i

n

=1


 is continuous at U0 , there is a 

 i k, ,∈( )0  such that

G U G Ui i i j
i

n

( ) − ( ) <
=

0

1




if

0
0

1

< − <
=

U Ui i k
i

n


,

This and Equation (3.11) imply that

H U H G Ui k i
i

n

i k i i
i

n

, ,( ) = ( ) <
= =1 1

 



If 0
0

1

< − <
=

U Ui i k
i

n


,

Since this implies (3.9), Gi
i

n

=1


 is differentiable at 
X

0
.

Since U0  is an arbitrary member of F Ni i
i

n

( )
=

,
1



 

we can now drop the zero subscript and conclude 

that Gi
i

n

=1
  is continuous and differentiable on 

F Ni i
i

n

( )
=

,
1

  and

[ ] ,G U F Z U F Ni i
i

n

i i
i

n

i
i

n

i i
i

n
′

=

′ −

= = =
( ) = ( )  ∈ ( )

1

1

1 1 1

   

Hence,

′ ( ) = ( ) = ( ){ }



= =

−

G N G N F Zi i
i

n

i i
i

n

1 1

1

 

Where

U F Z U F Ni
i

n

i i
i

n

i
i

n

i i
i

n

= = = =

= ( ) ∈ ( )
1 1 1 1

   

,

and hence the proof

Corollary 3.3: If  Fi
i

n

=1


 is continuously 

differentiable on a neighborhood of Z0  

and J F Zi i
i

n

0

1

0( ) ≠
=

,


 then, there is an open 

neighborhood Ni
i

n

=1


 of Z0  on which the 

conclusion of the main result holds.
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