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ABSTRACT
In this work, we reviewed the Fréchet derivatives beginning with the basic definitions and touching most 
of the important basic results. These results include among others the chain rule, mean value theorem, and 
Taylor’s formula for differentiation. Obviously, having clarified that the Fréchet differential operators 
exist in the real Banach domain and that the operators are clearly continuous, we then in the last section 
for main results developed generalized results for the Fréchet derivatives of the chain rule, mean value 
theorem, and Taylor’s formula among others which become highly useful in the analysis of generalized 
Banach space problems and their solutions in Rn.
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THE USUAL FRECHET DERIVATIVES

Given x a fixed point in a Banach space X and Y another Banach space, a continuous linear operator  
S: X→Y is called the Frechet derivative of the operator T: X→Y at x if
T x x T x S x x x�� � � � � � � � � � �� � �� ,

and

lim
,

x

x x
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0
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Or equivalently,
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T x x T x S x
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�

0

0

This derivative is usually denoted by dT (x) or �� �T x  and T is Frechet differentiable on its domain if 
�� �T x exists at every point of the domain as in Abdul[1] and Argyros[2].

Remark: If X = R, Y = R, then the classical derivative �� �f x  of real function f: R→R at x

�� � � �� � � � �
�

f x
f x x f x

xx
lim
�

�
�0

Is a number representing the slope of the graph of the function f at x where the Frechet derivative of f is 
not a number but a linear operator on R into R. Existence of �� �f x  implies the existence of the Frechet 
derivative[3] as the two are related by

f x x f x f x x x g x�� � � � � � � � � � � � �� � � �
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While S is the operator which multiplies every δx by the number �� �f x . In elementary calculus the 
derivative at x is a local approximation of f in the neighborhood of x while the Frechet derivative is 
interpreted as the best local linear approximation. It is clear from definition that if T is linear, then the 
Frechet derivative is linear as well, that is,
dT x T x� � � �� �

THEOREM 1.1:[4]

If an operator has the Frechet derivative at a point, then it has the Gateaux derivative at that point and 
both derivatives have equal values.

THEOREM 1.2:[5]

Let Ω  be an open subset of X and T Y:��  have Frechet derivative at an arbitrary point a of Ω . Then 
T is continuous at a. This means that every Frechet differentiable operator defined on an open subset of 
a Banach space is continuous.

THEOREM 1.3(CHAIN RULE):[1,6]

Let A, B, and C be real Banach spaces. If S: A→B and T: B→C are Frechet differentiable at x and
�� � � � � �� � �� �U x T S x S x . Then, the higher order Frechet derivatives for real U = ToS can successively be 

generated iteratively such that

U x T S x S xn n n� � � �� � � � �� � � �
For n ≥ 2 and integer.

THEOREM 1.5 (IMPLICIT FUNCTION THEOREM)[1,7,8]

Suppose that X, Y, and Z are Banach spaces, C an open subset of X×Y and T: C→Z is continuous, suppose 
further that for some x y C

1 1
,� ��

i. T x y
1 1

0,� � �
ii. The Frechet derivative of T (.,.) when x is fixed is denoted by Ty (x, y) called the partial Frechet derivative 

with respect to y, exists at each point in a neighborhood of (x1, y1) and is continuous at (x, y).

iii. T x y B z yy 1 1

1

, ,� ��� �� � � ��
 then there is an open subset of X containing x and a unique continuous 

mapping y: D→Y such that T(x, y (x)) = 0 and y(x1)=y1

Corollary 1.6: If in addition to theorem 1.5 Tx(x, y) also exists in the open set, and is continuous at 
(x1, y1). Then, F: x→y (x) has Frechet derivative at x1 given by

�� � � � � ��� �� � ��
F x T x y T x yy x1 1

1

1 1
, ,

THEOREM 1.7 (Taylor’s Formula for differentiation)[1,9,10]

Let T X Y:�� �  and let a a x, �� ��  be any closed segment lying in Ω . If T is Frechet differentiable at 

a, then
T a x T a x x x

x
x

�� � � �� � � � � � �
� � �

�

� � � �

�
�

�

�lim
0
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T a h T a T a x T a x x x

x
x

�� � � � � � �� � � ��� �� � � � �
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�
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�

1

2

0

2

0

�

�lim

For twice differentiable functions.
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MAIN RESULTS ON GENERALIZED FRECHET DERIVATIVES

Let x be a fixed point in the real Banach space. Also let the continuous linear operator S: X→Y be a real 
Frechet derivative of the operator T: X→Y such that

lim
�

� �

�x

T x x T x S x
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0

Then, the higher order Frechet derivative successively can be generated in an iterative manner such that
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n≥2 and an integer.

THEOREM 2.1 (CHAIN RULE): Let A, B, and C be a unitary spaces, if S: A→B and T: B→C are 
Frechet differentiable at z and �� � � � �� � �� �u x u s x s x . Then, the higher order Frechet derivative for 

U xn� � � � can be generated with U S T=   generating � n nz U z� � � �� � � � � if and only if
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THEOREM 2.2 [Generalized Frechet Mean Value theorem]: Let T: A→B where A is an open convex 
set containing a, b, and c is a normed space. T n x� �� �  exists for each a a b�� �,  and T xn�� � � �1  is continuous 
on [a, b], then

T b T a T a T b T an n
x a b

n n n�� � �� �
�� �

� � �� � �� �� � � � � � � � � � � � �1 1 2 2

,

sup

THEOREM 2.3 [Generalized Implicit function theorem]
Suppose that A, B, and C are real Banach spaces, D is an open subset of A×B and T: D→C is continuous. 
Suppose further that for some a b D,� �� , then

i. T a bn� � � � �, 0

ii. The nthFrechet derivative of T (.,.) where x  is fixed and denoted by T a bb
n
1 1 1

� � � �,  called the nth partial 

derivative with respect to b exists at each point in a neighborhood of (a1, b1) and is continuous at a1, b1

iii. T a b B C Bx
n� � �

� ��
�

�
� � � �1 1

1

, ,  then there is a subset E of A containing a1 and a unique continuous 

mapping S: E→C such that T a b an� � � �� � �1 1 1
0,  and S a bn� � � � �1 1
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Corollary 2.4: If the addition to conditions of theorem 2.3, T a ba
n�� � � �1

,  also exists on the open set, and 
is continuous at (a1, b1), then F: a→b (a) has the nth Frechet derivative at a1 given by

F a T a b T a bn
n
n

a
n� � �� � � �� �� � � � � ��

�
�
� � �1

1
1

1

1 1
, ,

THEOREM 2.5 [Taylors formula for nth Frechet differentiable functions]
Let T X Y:�� �  and a a n x, �� ��  be any closed segment lying in Ω . If T is differentiable in Ω  and nth 
differentiable at a, then

T a n x T a T a x T a x x
n
T x xn n n n�� � � � � � �� � � � �� � � � � �� � �� � � �� � � � � �

1

2

1


!
�� �x� �

where

lim
�

�
x

x
��

� � �� 0

PROOF OF MAIN RESULTS

Proof of Theorem 2.1 (chain rule)

Let x x X,� �  and suppose Un (x) can be generated with U S T=   such that the generalized Frechet 

derivative
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therefore
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0lim lim By L'HHospital Rule� �

Hence, U x xn n� � � � ��  is Frechet differentiable and the proof is complete.

PROOF OF THE GENERALIZED FRECHET MEAN VALUE THEOREM

Let T: K→B where K an open convex set containing is a and b. B is a normal space and T xn� � � �  exists 

for each x in [a, b] and �� �T x  is continuous in [a, b] such that

T b T a T x b ax a b� � � � � � �� � ��� �,
sup

Then by induction for the nth complex iterative Frechet derivative of T, the mean value theorem becomes
T b T a T x T b T an n

x a b
n n n�� � �� �

�� �
� � �� � �� �� � � � � � � � � � � � �1 1 2 2

,

sup

Proof of Theorem 2.3 [generalized implicit function theorem]

For the sake of convenience, we may take x1 = 0 and x
2
0

* = . let

A T B C Bx
n� � �� � ��

�
�
�

�� �
2

1
0 0, ,
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Since D is an open set containing 0 0,� � , we find that

D D x C x x Dx� � � � ��� �
1 2 1 2

,

For all sufficiently small say x1 � � . For each x1 having this property, we define a function S x xn�� � � �1

1 2
,

D Cx1
→  by S x x x FT x xn n�� � �� �� � � � � �1

1 2 2

2

1 2
, , . To prove the theorem, we must prove the existence of a 

fixed point for S x xn�� � � �1

1 2
,  under the condition that x1  is sufficiently small. Continuity of the mapping 

x x x
1 2 1
� � � and x x x

2 1 2� �� * . Now,

S x x U U T x x Ux
n

x2 2

1

1 2 1 2

�� � � �� � � � � �� �, ,

and
FF FTx

n� �� �� � �1 1

2
0 0,

Therefore, assumptions on T(n−1) guarantees the existence of S(n−1) (x1, x2) for sufficiently small x1  and 
x2  and

S x x U F T T x x Un
x
n

x
n�� � �� � �� �� �� � � � � � � �� ��

�
�
�

1

1 2

1 1

1 22 2
0 0, , ,

hence
S x x F T T x xn

x
n

x
n�� � �� � �� �� � � � � � � �1

1 2

1 1

1 22 2
0 0, , ,

Since, Tx
n
2

1�� � is continuous at (0, 0) there exists a constant L < 0 such that

S x x Ln�� � � � �1

1 2
,  (3.3.1)

Or sufficiently small x1  and x2 , we say that x1 1� �� �  and x2 2� � . Since T n�� �1  is continuous at 

(0, 0), there exists an ε ≤ ε1 such that

S x FT x Ln n�� � � �� � � � � �� �1

1 0 1 0 2
1

, ,
�  (3.3.2)

For all x1with x1 � � . We now show that S xn�� � � �1

1
,.  maps the closed ball S x B xn

� ��� � � � � � �� �1

2 2 2
0

into itself. For this let x1 � �  and x2 2� � . Then by the Mean Value theorem and (3.3.1), (3.3.2), we 
have
S x x S x x S x S xn n n n�� � �� � �� � �� �

� �

� � � � � � � � � � �

�

1

1 2

1

1 2

1

1

1

0 1

0 0, , , ,

�
ssup *

, ,S x x x S x L Lx
n n
2 21 2 2

1

1 2 2
0 1

� � �� �� � � � � � � �� � �� � �

Therefore, for x S x Sn n
1

1

1

1

2
0� � � � ��� � �� �� �, ,. : . Also for x x S

2 2 2
0

* **
, ;� � ��  we obtain by the mean value 

theorem of section 2.2 and equation (3.3.1)

S x x S x x S x x x xn n
x x

n�� � �� �
�

�� �� � � � � � � �1

1 2

1

1 2

1

1 2 2
2 2 2

, , ,
* ** sup *

� 22 2 2

** * **� �L x x

The Banach contraction mapping theorem guarantees that for each x1 with x1 � �  there exists a unique 

x x S n
2 1

1

2
0� �� � ��� �

�  such that

x x S x x x x x FT x x xn n
2 1

1

1 2 1 2 1

1

1 2 1� � � � �� � � � � � � �� ��� � �� �
, ,

That is,
T x x xn�� � � �� � �1

1 2 1
0,
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By the uniqueness of x2, we have that x2 (0) = 0 since

T n�� � � � �1
0 0 0,

Finally, we show that x x x
1 2 1
� � �� �  is continuous for if x

1

* � �  and x
1

** � � , and then selecting 

x x x x
2

0

1 2 1
� � �,

**  and x S x xn
2

1

1 2

0* *
,� � ��� � . We have by the error bound for fixed point iteration on the 

mapping S xn�� � � �1

1
,.

x x x x
L
x x

2 1 2 1 2

0

2

1

1

** *� � � � � �
�

�

We can write

x x x x S x x x

S x x x

n

n

2

0

2 2 1

1

1 2 1

1

1 2 1

� � � � � � �� �
� � �� �

�� �

�� �

* ** * **

* **

,

, �� � �� �
� � �� � �

�� �

�� � �� �

T x x x

F T x x x T x x x

n

n n

1

1 2 1

1

1 2 1

1

1 2 1

* **

* **

,

, ,
***� �� ��

�
�
�

Therefore, by continuity of T x x x xn�� � � � �� �1

2 1 2 1
,

** ** can be made arbitrary small for x x
1 1

** *−  sufficiently 

small and hence the proof.

Proof of Corollary 2.4

We set x x x
1 1 1
� �* �  and G x F x xn n� � � �� � � ��

1 1 1

* . Then G n� � � � �0 0 and

G x T x x x

T x x

n
x
n

x
n

�� � �� � �
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� � � �� ��
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1
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Proof of Taylor’s formula for nth Frechet differentiable function

The proof of this theorem can be generated as in Carton[11] and Nasheed.[12]
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