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INTRODUCTION AND RESULTS

Introduction

Let X  be a linear vector space. A linear operator from X  into the space R  is called a real linear functional 
on X . Similarly for X  a normed linear space a bounded linear operator from X  into R  is called a 
continuous linear functional on X .

Results

The Hahn–Banach theorem is basically defined for R  and sometimes holds for a complex linear functional 
on X when X  is a complex space while a complex linear functional on X  is obtained when X  is a 
complex space and R  is replaced by R .

Theorem 1.2.1 (Hahn–Banach Theorem):[1] Let X  be a real vector space, M  a subspace of X , and P  
a real function defined on X  satisfying the following conditions:
1. P x y P x p y( ) ( ) ( )� � � .

2. P x p x( ) ( )� �� � �x y X,  and positive real α .

Further, suppose that f  is a linear functional on M  such that f x p x� � � � � � �x M . Then, there exists a 
linear functional F  defined on X  for which F x f x� � � � � � �x M  and F x p x x X� � � � � � � . In other 
words, there exists an extension F  of f  having the property of f .

Theorem 1.2.2 (Topological Hahn–Banach Theorem):[2] Let X  be a normed space, M  a subspace of 
X , and f  a bounded linear functional on M .

1. F x f x x M� � � � � � � .

2. F f= .
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In other words, there exists an extension F  of f  which is also bounded linear and preserves the norm.
The proof of Theorem 1.2.1 depends on the following lemma:

Lemma 1.2.1:[3] Let X  be a vector space and M  its proper subspace. For x X M0 � � , let N M x� � �� �0

. Furthermore, suppose that f  is a linear functional on M  and p  a functional on X  satisfying the 
conditions in theorem 1.2.1 such that f x p x x M� � � � � � � . Then, there exists a linear functional F  
defined on N  such that F x f x x M� � � � � � �  and F x p x x N� � � � � � � .

In short, this lemma tells us that Theorem 1.2.1 is valid for the subspace generated or spanned byM x0� �


.

Consequences of the Extension Form of the Hahn–Banach Theorem

The proofs of the following important results mainly depend on the proof of Lemma 1.2.1.

Theorem 1.2.3:[4] Let w  be a nonzero vector in a normed space X  then there exists a continuous linear 

functional F , defined on the entire space X  such that 1=F‖ ‖  and ( ) =F w w‖ ‖.

Theorem 1.2.4:[5] If X  is a normed space such that F w F X� � � � �0 *, then w = 0 .

Theorem 1.2.5:[6] Let X  be a normed space and M  its closed subspace. Further assuming that 
w X M w X w M� �� � �but . Then, there exists F X∈ * such that F m( ) = 0  for all m M∈ , and 

F w( ) =1.

Theorem 1.2.6:[7] Let X  be a normed space, M  its subspace and w X∈  such that d w m� � �inf 0. It 
may be observed that this condition is satisfied if m  is closed and w X M� �� �. Then, there exists 
F X∈ * with 1=F‖ ‖ , ( ) 0≠F w , and F m( ) = 0  for all m M∈ .

Theorem 1.2.7:[8,9] If X * is separable, then X  is itself separable.

PROOF OF HAHN–BANACH RESULTS

Proof of Lemma 1.2.1[1,9] due to Siddiqi

This will help us in developing the proof of theorem 1.2.1 of the Hahn–Banach Theorem. Since 
( ) ( )≤f x p x  for x M∈  and f  is linear, we have arbitrary 1 1,   .∈y y M

f y y f y f y P y y( , ) ( ) ( ) ( , )1 2 1 2 1 2� �

or
f y f y p y x y x( ) ( ) ( , )1 2 1 0 2 0� � �

� � � � �p y x p y x( ) ( )1 0 2 0

by condition (1) of Theorem 1.2.1.
� � �� � � � �� � � �p y x f y p y x f y2 0 2 1 0 1  (2.1.1)

Suppose y1  is kept fixed and y2  is allowed to vary over M , then equation (2.1.1) implies that the set of 

real numbers p y x f y y M1 0 2 2�� � � � � �� � has upper bounds and hence the least upper bound. Let 

� � �� � � � � �� �sup p y x f y y M1 0 2 2 . If we keep y2  fixed and y1  is allowed to vary over M , equation 
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(2.1.1) implies that the set of numbers p y x f y y M2 0 1 1�� � � � �� � has lower bounds and hence the 
greatest lower bound.

Let � � �� � � � �� �inf p y x f y y M1 0 1 1 . As it is well known that between any two real numbers, there is 

an always a third real numbers. Let y  be a real number such that

� � �� �  (2.1.2)

It may be observed that if � �� , then � � �� � . Therefore, for � �M , we have

p y x f y p y x f y( ) ( ) ( ) ( )� � � � � �0 0�  (2.1.3)

From the definition of N , it is clear that every element x  in N  can be written as

x y x� � � 0  (2.1.4)

Where x M0 ∈  or x XM0 ∈ , λ  is a uniquely determined real number and γ  a uniquely determined vector 

in M . We now define a real-valued function on N  as follows:

F x F y x f y y� � � �� � � � � �� �0  (2.1.5)

We shall now verify that[8] the well-defined function satisfies the desired conditions, i.e.,
i. F  is linear,

ii. F x f x x M� � � � � � � ,

iii. F x p x x N� � � � � � � .

iv. F  is linear: For

z z N z y x z y x1 2 1 1 1 0 2 2 2 0, ,� � � � �� �� �

F z z F y x y x1 2 1 1 0 2 2 0�� � � � � �� �� �

� �� � � �� �� � � �� � � �� �F y y x f y y1 2 1 2 0 1 2 1 2� � � � �

� � � � � � � �f y f y1 2 1 2� � � �

as f  is linear: Or

F z z f y f y1 2 1 1 2 2�� � � � � ��� �� � � � ��� ��� � � �

Similarly, we can show that F z F z z N� �� � � � � � �  and for real µ .

2. If x M∈ , then γ  must be zero in equation (2.1.4) and then equation (2.1.5) gives F x f x� � � � �
Here, we consider three cases.[9] (See equation 2.1.4)
Case 1, � � 0 : We have seen that F x f x� � � � �  and as f x p x� � � � �, we get that.

F x p x� � � � �

Case 2, � � 0 : From equation (2.1.3), we have.

� � �� � � � �p y x f y0  (2.1.6)
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Since N  is a subspace, y N/ ��  replacing y  by y N/  in equation (2.1.6), we have

� �
�

� � � � � �
�
�

�
�
�

�

�
�

�

�
�p y x f f y

/ 0

or

�
�

� �� �� ��
�
�

�
�
� � � �p y x f y1

0 /

By condition (2) of theorem 1.2.1

p y x p y x1 1
0 0�

�
�

��� ��
�
�

�
�
� � �� �

For � � 0  and f y f y/ �
�

� � � � �1  as f  is linear. Therefore, �� � �� �� � � � �p y x f0  or 

f y p y x� � � �� �� � 0 . Thus, from equations (2.1.4) and (2.1.5), we have F x p x x N� � � � � � � .

Case 3, � � 0 : From equation (2.1.3), we have.

� � �� � � � � �p y x f y0 �  (2.1.7)

Replacing γ  by � �/  in equation (2.1.1), we have

�
�

��
�
�

�
�
� �

�
�
�

�
�
� �p y x f y

� �
�0

or

�
�

��
�
�

�
�
� � � �

�
�

�
�
� � � � �p y x f y f y

�
�

�
�

�0

1

As f  is linear, i.e.,

�
�

��
�
�

�
�
� � � � �p y x f y

�
�

�0

1  (2.1.8)

Multiplying (2.1.8) by λ , we have

�
�

��
�
�

�
�
� � � � ��

�
��p y x f y0

(The inequality in equation (2.1.8) is reversed as λ  is negative),

�� � �
��

�
�

�
�
� �� ��

�
�

�

�
� � � ��

�
�p y y x F x0  (2.1.9)

Since � �
1

0
�

, by condition (2) of Theorem 1.2.1, we have

P y x p y x��
�
�

�
�
� �� ��

�
�

�

�
� � � �� �1 1

0 0�
�

�
�  (2.1.10)

and so

�� � ��
�
�

�
�
� �� � � � ��

�
�

1
0p y x F x

or

F x p x x N� � � � � � �
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Proof of Theorem 1.2.1.[2,9] due to Siddiqi

Let S  be the set of all linear functionals F  such that F x f x x M( ) ( ) � � �  and F x p x x X( ) ( )� � � . 

That is to say,S  is the set of all functionals F  extending f  and ( ) ( )≤F x p x  over X . S  is non-empty as 
not only does F  belong to it but there are other functionals also which belong to it by virtue of Lemma 
1.2.1, we introduce a relation in S  as follows.

For F F S1 2, ∈ , we say that F1 is in relation to F2  and we write F F1 2<   if DF DF1 2⊂  and

F DF F2 1 1/ =  (let DF1  and DF2  denote, respectively, the domain of F1 and F F DF2 2 1: / denotes the 

restriction of F2 on the domain of F1. S  is a partially ordered set. The relation $<$ is reflexive as F F1 1<  . 

< is transitive, because for F F F F1 2 2 3< <   , ,  we have

DF DF DF DF F DF F1 2 2 3 2 1 1� � �, / .  and F DF F3 2 2/ = , which implies that

DF DF1 3⊂  and F DF F3 1 1/ = . $<$ is anti-symmetric. For F F1 2<  ;

DF DF
F DF F

1 2

2 1 1

�
�

For F F2 1< ;

DF DF
F DF F

2 1

1 2 2

�
�

Therefore, we have F F1 2= .

We now[5] show that every totally ordered subset of S  has an upper bound in S . Let T F� � ��  be a 

totally ordered subset of S . Let us consider a functional, say F  defined over DFσ
σ


. If x DF� �
�


, 

there must be some σ  such that x DF� � , and we define F x F x� � � � �� . F  is well defined and its 

domain Fσ
σ


is a subspace of X . DFσ
σ


 is a subspace: Let x y DF, � �
�


. This implies that x DF� �1
 

and y DF� � 2
. Since T  is totally ordered, either DF DF� �1 2

�  or DF DF� �2 1
� . Let DF DF� �1 2

� . Then, 

DFσ , x DF� �1
 which implies that    real σ µ∈ ∀x DF . This shows that DFσ  is a subspace. F  is well 

defined: Suppose x DF� � . Then, by the definition of F , we have F x F x( ) ( )� �  and F x F x( ) ( )� � . By 

the total ordering of T  either Fσ  extends Fυ  or vice-versa and so F x F x� �( ) ( )�  which shows that F  is 

well defined. It is clear from the definition that F  is linear, F x f x( ) ( )=  for x D M� �  and 

( ) ( )   ≤ ∀ ∈F x p x x DF . Thus, for each F F� � ; i.e., is an upper bound of T . By Zorn’s lemma, there 

exists a maximal element F̂  in S ; i.e., îF  is a linear extension of ˆ ( ) ( )≤F x p x  and ˆ<F F  for every 

F S∈ . The theorem will be proved if we show that ˆ =FD X . We know that ˆ ⊂FD X . Suppose there is 

an element x X∈  such that ˆ0 ∉ =Fx D X . By lemma 1.1.1, there exists F̂  such that F̂  is linear, 

ˆ
ˆ( ) ( )= ∀ ∈ FF x F x x D , and ˆ ( ) ( )≤F x p x  for x D xF� �� ��� ��0  is also an extension of f . This implies that 

F̂  is not maximal element for S  which is a contradiction. Hence, D XF = .
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Proof of Theorem 1.2.2[3.9] due to Siddiqi

Since f  is bounded and linear, we have f x f x x� � � , . If we define p x f x� � �  then p x( ) 
satisfies the conditions of theorem 1.1.1. By theorem 1.2.1, there exists F  extending f  which is linear 
and ( ) ( )≤ =F x p x f x‖ ‖‖‖ which implies that F  is bounded and

F x F x f� � � �1sup 

On the other hand,[9] for x M∈ , f x F� � . Hence, =f F‖ ‖‖ ‖.

Remark 2.2.1: The Hahn–Banach theorem is also valid for normed spaces defined over the complex 
field.

Consequences of the Extension Form of the Hahn–Banach Theorem

The proofs of the following important results mainly depend on theorem 1.2.2.

Proof of Theorem 1.2.3.[4,9] due to Siddiqi
Let M w m m w R� � � �[ / , ]�  and f M R: ⇒  such that ( ) λ=f m w‖ ‖.

f  is linear

1 2 1 2[ ( ) ( ) ]λ λ+ = +f m m w‖ ‖

where m w1 1� �  and m w2 2� �  or

f m m w w w f m f m1 2 1 2 1 2 1 2�� � � �� � � � � � � � � �� � � �

Similarly, f m f m R� � �� � � � � � � . f  is bounded f m w m� �� � � ��  and so f m k m� � �  where 

0 1� �� �k  and

f w w m w� � � � �� �if   then , � 1

By theorem 1.2.2,
f f m w mm M

m
m m� � � � � ��

�
� �

1

1 1
1sup sup sup�

Since f , defined on M , is linear and bounded (and hence continuous) and satisfies the conditions 
f w w� � �  and f =1; by Theorem 1.2.2, there exists a continuous linear functional F  over X  

extending f  such that F =1 and F w w� � � .

Proof of Theorem 1.2.4.[5,9] due to Siddiqi
Suppose 0≠w  but F w� � � 0 for all F X∈ *. Since 0≠w , by theorem 1.2.1., by theorem 1.2.3, there 

exists a functional F X∈ * such that 1=F‖ ‖  and ( ) =F w w‖ ‖. This shows that F w� � � 0 which 

contradiction is. Hence, if F w F X� � � � �0 *, then w  must be zero.

Proof of Theorem 1.2.5.[6,9] due to Siddiqi
Let w XM∈  and d w mm M� ��

inf . Since M  is a closed subspace and M d, > 0. Suppose N  is the subspace 
spanned by w  and M ; i.e.,n N∈  if and only if
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N w m R m M� � � �� �, ,  (2.1.11)

Define a functional on N  as follows:

F n� � � �
F  is linear and bounded: f n n1 2 1 2�� � � �� � , where n w m1 1� ��  and n w m2 2� �� . Hence, 

f n n f n f n1 2 1 2�� � � � � � � �. Similarly, f n f� �� � �  for real µ . Thus, f is linear. To show that f  is 

bounded, we need to show that there exists K > 0 such that f n n Nn� � � � � . We have

n m w m w m w� � � � � ��
�
�

�
�
� � � �� �

�
�

�

Since � �m M�  and d inf w m
m M

� �
�

, we see that � � �
m w d
�

. Hence, n � � or � �� n d/ By 

definition, f n n d� � � �� /  or f n k� � �  where k
d

� �
1

0. Thus, f  is bounded. N w= implies that 

� �1 and therefore, f w� � �1. N m M� �  implies that � �1 and therefore, from the definition of f , 

f m� � � 0. Thus, f  is bounded linear and satisfies the conditions f w� � �1 and f m� � � 0. Hence, by 

theorem 1.2.2, there exists F  defined over X  such that F  is an extension of f  and F  is bounded linear, 

i.e., F X F w� � � �*, 1 and F m m M� � � � �0 .

Proof of Theorem 1.2.6.[7,9] due to Siddiqi
Let N  be the subspace spanned by M  and (see equation (2.1.11)). Define f  on N  as f n d� � � � , 

proceeding exactly as in the proof of theorem 1.2.5, we can show that f  is linear and bounded on N , 

f n d n� � � �� , f w d� � � � 0, and f m� � � 0 for all m M∈  since f n n� � � , we have

1≤f  (2.1.12)
For arbitrary �� 0, by the definition of d , there must exist an m M∈  such that w m d� � �� Let 

z w m
w m

�
�
�

. Then, z w m
w m

�
�
�

�1 and f z f w m d w m( ) ( ) /� � � � . By definition, f n d( ) � � ;

n w m� � , then � �1; and so f w m d( )� � ;

f z d
d

( ) �
��

 (2.1.13)

By theorem 1.2.2. f sup f m
m

=
=1

( ) . Since z =1, equation (2.1.13) implies that f z d
d

( ) �
��

. Since �� 0 

is arbitrary, we have

f ≥1 (2.1.14)

From equations (2.1.12) and (2.1.14) have f =1. Thus, f  is bounded and linear, 

f m m M f w( ) ; ( )� � � �0 0  and f =1. By theorem 1.2.2, there exists F X∈ * such that ( ) 0≠F w ; 

F m( ) = 0  for all m M∈  and f =1.
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Proof of Theorem 1.2.7.[8,9] due to Siddiqi
Let fn� � be a sequence in the surface of the unit sphere S  of

X S F X F* * /� � �� ��
�

�
�1

such that F F Fn1 2, , ,�� � is a dense subset of S . By theorem 1.2.2,

( )
1=

= =
v

F sup F v
‖‖

‖ ‖

and so for �� 0, there exists v X∈  such that 1=v‖‖  and

( ) ( )1−∈ ≤F F v‖ ‖  (2.1.15)
Putting �� 1

2
 in equation (2.1.15), there exists v X∈  such that 1=v‖‖  and ( )1

2
≤F F v‖ ‖ .

Let vn� � be a sequence such that 1=nv‖ ‖ ; ( )1
2

≤n n nF F v‖ ‖ ; and M  be a subspace spanned by vn� �. 

Then, M  is separable by its construction. In other to prove that X is separable, we show that M X=  

suppose ≠X M ; then, there exists w X w M� �;  by theorem 1.2.2, there exists F X∈ *such that 1=F‖ ‖
( ) 0≠F w  (2.1.16)

and F m m M� � � � �0 . In particular, F v nn� � � �0 , where

1

2
F F v F v F v F v F v F v F vn n n n n n n n n n n� � � � � � � � � � � � � � � � � � �

Since vn =1 and

F v nn� � � �0

We have
1

2
F F Fn n� �  (2.1.17)

We can choose Fn� � such that

lim
n nF F
��

�� � � 0 (2.1.18)

Because Fn� � is a dense subset of S . This implies from equation (2.1.17) that F nn � �0 .

Thus, using equations (2.1.16), (2.1.18), we have
I F F F F F F F F F F Fn n n n n n� � � � � � � � � � �2

or
1 0= =F ,

which is contradiction. Hence, our assumption is false and X M= .

MAIN RESULTS ON THE GENERALIZED HAHN–BANACH THEOREM

Theorem 3.1: Let X  be a real vector space, M −  a subspace of X , and Pi  a sequence of real function s  

defined on X  satisfying the following conditions:

i. P x p xi i
i

n

i i
i

n

� ��

�
�

�

�
� �

� �
� �

1 1
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ii. P x p xi i i i i i� �� � � � �

For each x Xi ∈  and αi  all positive.

Further, suppose that fi  is a sequence of linear functional on M  such that

f x p x x Mi i
i

n

i i
i

n

i� � � � � � �
� �
� �

1 1

Then, there exists sequence of linear functional iF  defined on X  for which

F x f x x Mi i
i

n

i i
i

n

i� � � � � � �
� �
� �

1 1

and

F x p x x Xi i
i

n

i i
i

n

i� � � � � � �
� �
� �

1 1

In other words, there exists sequence of extensions Fi  of F  having the property of Fi .

Proof: The statement and proof of the following Lemma will be very significant in the proof of the 
Generalized Hahn–Banach theorem.

Lemma: Let X  be a vector space and µ  its proper subspace. For each x X Mi � � , let N m xi� � ��� ��

. 

Furthermore, suppose that fi  is a sequence of linear functionals on M  and pi ��  sequence of functionals 

on X  satisfying the conditions of theorem 3.1 such that

f x p x x Mi i
i

n

i i
i

n

i� � � � � � �
� �
� �

1 1

Then, there exists a sequence of linear functional Fi  defined on N  such that

F x f x x Mi i
i

n

i i
i

n

i� � � � � � �
� �
� �

1 1

,

and

F x p x x Ni i
i

n

i i
i

n

i� � � � � � �
� �
� �

1 1

,

This Lemma implies that theorem 3.1 is valid for the subspace generated or spanned by M xi�� �.

Proof: Since

f x p xi i
i

n

i i
i

n

� � � � �
� �
� �

1 1

For x Mi ∈  and fi
i

n

�
�

1
 are linear, we have for arbitrary y Pi ∈

f y f y p yi i
i

n

i i
i

n

i i
i

n

� � �
� � �
� � �� � � �

1 1 1

or

( ) ( ) ( ) ( )0 1 0 1 1 0
1 1

= = +
= = ≠ ≠

∆ ≤ ∆ + ≤ + + − −∑ ∑∑ ∑
n n

n n
i i i i i i i i i i

i i i even i odd

f y p y x p y x p y x

By condition 1 of theorem 1.2.1., thus by regrouping the terms of � i�1 on one side and those of γ i  on the 

other side, we have



Eziokwu: Hahn Banach extension results with generalizations

AJMS/Oct-Dec-2020/Vol 4/Issue 4 23

� �� � � � ��� �� � �� ��� �� � � �� � �
��
�� p y x f y p y x f yi i i i i i i i
i

n

i

n

1 0 1 0 1

11

 (3.1)

Suppose y si′  are kept fixed and y si�
�

1  are allowed to vary over M , then equation (3.1) implies that the 

set of real number p y x f y y Mi i i i i�� �� �� � � �0  has lower bounds and hence greatest lower bound by 

Remark 1.1.
Let

R p y x f y y Mi i i i i� �� � � � � �� �inf :0

From equation (3.1), it is clear that � �� . As it is well known that between any two real numbers, there 

is always a third real number. Let p  be a real number such that

� � �� �   (3.2)

It may be observed that if � �� , then � � �� � . Therefore, for all y M∈ , we have

f p y x f y p y x f yi i i i i i i i
i

n

i

n

� � �� � � � �� ��� �� � � �� � �� ��� ��
��
�� 0 0

11

�  (3.3)

From the definition of N , it is clear that every element xi  in N  can be written as

x y xi i� � � 0  (3.4)

Where x M0 ∈  or x X M0 � � , λ  is uniquely determined real number and γ  is uniquely determined 

vector in M . We now define a sequence of real valued functions on N  as follows

F x F y x f yi i i i i i� �� � � � � �� �0   (3.5)

Where y  is given by equation (3.2) and x  is as in equation (3.4). We shall now verify that the well-

defined sequence of functions F xi i� �  satisfies the desired conditions, i.e.,

i. Fi
i

n

�
�

1
 is linear

ii. f x F x x Mi i
i

n

i i
i

n

i� � � � � � �
� �
� �

1 1

iii. F x p x x Ni i
i

n

i i
i

n

i� � � � � � �
� �
� �

1 1

1. ∑ iF  is linear
For
z z z N z y x z y x z y xn n n n1 2 1 1 1 0 2 2 2 0 0, , , , , , ,� � � � � � � � �� �� � �

F y x y x y xn n1 1 1 0 2 2 0 0� � � � � �� �� � �

=       f y y y xn n1 1 2 1 2 0� ���� � � � ���� �� � �

� � ���� � � � ���� �f y y yi n n1 2 1 2� � � �

� � � � � � ��� � � � � ���f y f y f yn n n1 1 2 2 1 2    � � � � � �

 as  is linearfi
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or
F z z z f y f y f yi n n n n1 2 1 1 1 2 2 2� ���� � � � � ��� �� � � � ��� �� � � � ��� �� � � � � � ��

� � � � � � ��� � �F z F z F zn n1 1 2 2

Similarly,

2. f z F Z
i

n

i

n

� �� � � � �
��
��

11
 for each z N∈  and for real α

3. If x M1 ∈ , then λi  must be zero in equation (3.4).

Case 1: �i � 0:} We have seen that

F x f xi i
i

n

i i
i

n

� � � � �
� �
� �

1 1

and as

f x p xi i
i

n

i i
i

n

� � � � �
� �
� �

1 1

we get that

F x P xi i
i

n

i
i

n

i� � � � �
� �
� �

1 1

Case 2: � � 0 : From equation (3.2), we have

� � �� � � � �
�
� p y x f yi i i
i

n

0

1

 (3.6)

since N  is a subspace, y Ni��  replacing y  by y / λ  in equation (3.6), we have

�
� �

� �
�

�
�

�

�
� �

�

�
�

�

�
�

�

�
�
�

�

�
�
��


 p y x f y
i

i

i
i

i

ii

n

0

1

or

�
�

�
�

�
�

�
�

�

�
� �� � � �

�
�

�

�
�

�

�
�
�

�

�



�

� p y x f y
i i i i

i

ii

n 1

1

0

1

By condition (2) of theorem (2.1),

p y x p y xi
i

i
i

i i
i

n

i

n 1 1
0 0

11 � �
��� ��

�
�

�

�
� � �� ��� ��

��
��

For � � 0  and f y
x

f yi
i

i i
i i

�

�
�

�

�
� � � �1

�
 as fi  is linear.

Therefore,

� � �i i i i
i

n

i i
i

n

p y x f y� �� ��� �� � � �
��
�� 0

11

or

f y y p y xi i i i i i
i

n

i

n

� � � � �� �
��
�� � � 0

11
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Thus, from equations (3.4) and (3.5), we have

p y x f yi i i i i
i

n

i

n

� �� � � � ��� �� �
��
�� 0

11

�  (3.7)

Replacing γ i  by yi
λ

 in equation (3.7), we have

p y
x

x f y
xi

i

i
i

i

i
i

i

n

i

n �
�

�

�
�

�

�
� �

�

�
�
�

�

�
�
�
�

��
�� 0

11

�

or

p y
x

x f y
x

f yi
i

i
i i

i

i
i i i

�
�

�

�
�

�

�
�

�

�
�
�

�

�
�
�
� �

�

�
�

�

�
�

�

�
�
�

�

�
�
�
� �0

1
� �

�


 ��

��
�
�����

���
i

n

i

n

i

n

111

As fi  is linear,

p y
x

x f yi
i

i
i i i

i

n

i

n

�
�

�
�

�

�
�

�

�
�
�

�

�
�
�
� � � ��

��
�
����



 0

11

1
�

�
 (3.8)

Multiplying (3.8) by λ , we have

� � �i i
i

i
i i i i

i

n

i

n

p y
x

x f y� � �
�

�

�
�

�

�
�

�

�
�
�

�

�
�
�
� 
 � ��� ��

��
�� 0

11

(The inequality in (3.8) is reversed as λ  is negative) or

�� � �
�

�
�

�

�
� �� �

�

�
�
�

�

�
�
�
� � �

��


 �

�
�i i

i
i i i i

i

n

i

n

p y x F x1
0

11

Since � �
1

0
�i

, by theorem 2.1, we have

p y x p y xi
i

i i
i

i i
i

n

i
�
�

�
�

�

�
� �� � � �

�

�
�

�

�
� �� �

�

�
�
�

�

�
�
���


1 1
0 0

11 �
�

�
�

nn




and so

�� � �
�

�
�

�

�
� �� �

�

�
�
�

�

�
�
�
� � �

��


 �

�
�i

i
i i i i i

i

n

i

n

p y x F x1
0

11

or

F x p x x Ni
i

n

i i i
i

n

i
� �
� �� � � � � � �

1 1

and hence, the proof.
Now, having established the proof of the above stated lemma, we then make its use in the proof of 
theorem 3.1 earlier stated. Hence: Let S  be the set of sequence of all linear functional Fi  such that

F x f x x Mi i
i

n

i i
i

n

i� � � � � � �
� �
� �

1 1

and

F x p x x Xi i i
i

n

i
i

n

i� � � � � � �
��
��

11
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That is to say that S  is the set of sequences of all functional Fi  extending fi  and F x p xi i i
i

n

i
i

n

� � � � �
��
��

11
 

over X ; S  is a non-empty as not only does Fi  belong to it but there are other functional also which 

belong to it by virtue of theorem (1.2.1), we introduce a relation which is as follows.

For F F Si i, � �1 , we say that Fi  is in relation to Fi+1  and we write F Fi i  � �1. If DF DFi i� �1  and 

F DF Fi i i� �1 / , let DFi  and DFi+1 denote, respectively, the domain of Fi  and Fi+1 . F DFi i+1 /  on the 
partially ordered set. The relation $<$ is reflexive as F Fi i� � 1: �< is transitive because for 

F F F Fi i i i� �� � �   1 1 2; , we have DF DFi i� �1; DF DFi i� ��1 2 . F DF Fi i i� �1 / ; and F DF Fi i i� � ��2 1 1/ , which 

implies that DF DFi ⊂ 3  and F DF Fi i i� �2 / : $<$ is anti-symmetric forF Fi i� � 1.

DF DFi i� �1

F DF Fi i i� �1 /  

for
F F
DF DF
F DF F

i i

i i

i i i

�

�

� �

�
�

�

1

1

1 1

 

/

Therefore, we have F Fi i� �1 . We now show that every totally ordered subject of S  has an upper bound 

in S  Let T F�� ��1
 be a sequence of totally ordered subset of S . Let us consider a sequences of functional 

sayF defined over DF�
�

1

1

� .

If x DF�� �
�

1

1

, there must be some σ i  such that x DFi i
� �  and we defined F x F xi i ii

� � � � �� . F  is well 

defined and its domain DF
i

i

�
�
� is a subspace of X . DF

i

i

�
�
�  is a subspace. Let x x x DFn i

i

1 2, , ,� �� �
�

. 

This implies that x DFi i

i

�� �
�

 and x DFi i

i

� � ��1 1�
�

.

Since T  is totally ordered, either DF DF
i i� ��

�1
 or DF DF

i i� ��
�

1
. Let DF DF

i i� ��
�1

. Then, x DF
i

�
�� 1

 and 

so
x x DFi i i
� �� �1 1�

or
x x DFi i i

i

� �� �1 �
�

Let x DFi i
� �  implies that � ��

�

x DF
i

i

� �� real  . This shows that DF
i

i

�
�
�  is a subspace. F  is well 

defined: Suppose x DFi i
� �  and x DFi i

� � . Then, by the definition of Fi , we have F x F xi i ii
� � � � ��  and 

F x F xi i ii
� � � � �� . By the total ordering of T , either F

iσ
 and extend F

iϑ
 or vice-versa and so F x F x

i ii i� �� � � � �  
which shows that Fi  is well defined. It is clear from the definition that Fi  is linear,

F x f x x D Mi i
i

n

i i
i

n

i f� � � � � � � �
� �
� �

1 1

and

F x p x x Di i
i

n

i i
i

n

i f� � � � � � �
� �
� �

1 1
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Thus, for each F T F F
i i i� �� �, , i.e., is an upper bound of T . By Zorn’s lemma, there exists a maximal 

element Fi  in S , i.e., Fi  is a linear extension of

f F x p xi i i
i

n

i i
i

n

. � � � � �
� �
� �

1 1

and

F F F Si
i

n

i
i

n

i
� �
� �� �

1 1

for every   

The theorem will be proved if we show that D XFi
= . We know that D XFi

⊂ . Suppose there is an 

element x X∈  such that x DFi0 ∉ . By the above lemma 3.1, there exists Fi  such that Fi  is linear,

F x F x x Di i i i i Fi� � � � � � �

and

F x p x x D V xi i
i

n

i i
i

n

i F� � � � � � � ��� ��
� �
� �

1 1

0for

Is also an extension of f . This implies that F  is not maximal element S  which is a contradiction. Hence, 

D Xfi
= . Hence, the proof.

Theorem 3.2 (on the generalized form of the topological Hahn–Banach theorem): Let x  be a normed 

space M −  a subspace of X  and fi −  a sequence of bounded linear functional of M , then there exist a 

sequence of bounded functional Fi  on x  such that

F x f x x Mi i
i

n

i i
i

n

i� � � � � � �
� �
� �

1 1

F fi
i

n

i
i

n

� �
� ��

1 1

Proof 3.2: Since fi  is bounded and linear, we have

f x f x xi
i

n

i i
i

n

i
i

n

i
� � �
� � �� � � �

1 1 1

If we have defined p x f xi i
i

n

i
i

n

i
i

n

� � �
� � �
� � �

1 1 1
 then p xi i

i

n

� �
�
�

1
 satisfies the conditions of the theorem (3.1) and 

by this theorem, there exists Fi
i

n

�
�

1
 extending fi

i

n

�
�

1
 which is linear and F x p x x Xi i

i

n

i i
i

n

i� � � � � � �
� �
� �

1 1
, we 

have � � � � � �
� �
� �F x F xi i
i

n

i i
i

n

1 1
 as Fi  is linear and so by the above relation

F x p x f x f x p xi i
i

n

i i
i

n

i i i i i i
i

n

� � � �� � � � � � � �
� � �
� � � � � � �

1 1 1

Thus,

F x p x f xi i
i

n

i i
i

n

i i� � � � � �
� �
� � � �

1 1

Which implies that Fi  is bounded and

F F x fi x i i i
i

� � ��� � � ��1

sup  (3.9)
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On the other hand, for x M∈ ,

f x F x xi i
i

n

i i
i

n

i
i

n

� � � � � �
� � �
� � �

1 1 1

and so

f f xi
i

n

x
�

�� �� � �
1

1

sup

f f x Fi x
i

n

i i
i

n

i
i

n

� � � ��
� � �
� � �1

1 1 1

sup  (3.10)

Hence, by (3.9) and (3.10), we have

f Fi
i

n

i
i

n

� �
� ��

1 1

Proof of theorem 3.3: LetM w m m Ri i i i� � ��� �� � � �� �: �  and F M Ri : →  such that

f m wi i
i

n

i i
i

n

� � �
� �
� �

1 1
�

fi  is a linear since

f m m wi i j
i

n

i j i
i

n

�� � � �� �
� �
� �

1 1
� �

where m wi i i� �  and m wj j i� �  or

f m m w w f mi i j
i

n

i i
i

n

i
j i

n
i i i i

i

n

i
j i

�� � � � � �
� �

�
� � �

�
� �

� � � � �
1 1

1
1 1

1� �
11

n
i jf m

We now state the rest of the generalized results without their proofs as they directly follow.
Theorem 3.4: Let wi  be a sequence of non-zero vectors in a normed space X . Then, there exists a 

sequence of continuous linear functional Fi  defined on the entire space X  such that Fi =1 and

F w wi i
i

n

i
i

n

� � �
� �
� �

1 1

Theorem 3.5: If X  is a normed space such that F w F Xi i
i

n

i� � � � �
�
�

1

0 *. Then, wi
i

n

�
� �

1

0 .

Theorem 3.6: Let X  be a normed space and M  its closed subspace. Further assume that w XMi ∈ . 

Then, there exists F Xi ∈ * such that F mi i� � � 0  for all m Mi ∈  and F wi i� � �1.

Theorem 3.7: Let X  be a normed space, m  its subspace and w Xi ∈  such that d w mi i
m Mi

� � �
�
� inf 0.

Theorem 3.8: If xi
i

*
=1



 is separable, then Xi
i=1


 is itself separable.
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