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ABSTRACT
This research aims at generating the topological fixed point iteration scheme for the simplex method of 
Linear Programming problems in optimization as exemplified in the optimization of the flight attendants’ 
hiring problems of South African Airways Company displayed in the latter part of section two. Review 
of basic related concepts of the linear programming and flight attendant’s problems were discussed 
in sections one and early part of section two while main results boarding on the iterative schemes we 
discussed in section three.
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INTRODUCTION

The South African Airways

South African Airlines, Inc. (SA) is a major African airline headquartered in Pretoria. It is the Africa’s 
largest airline when measured by fleet size, revenue, scheduled passengers carried, scheduled passenger—
kilometers flown, and number of destinations served. South Africa, together with its regional partners, 
operate an extensive international and domestic network. South African Airlines is a founding member 
of the world alliance, the third largest airline alliance in the African Airlines and was started in about 
1964 through a union of more than eighty small global airlines.[1]

The two organizations from which South African Airlines was originated were Robertson Aircraft 
Corporation and Colonial Air Transport. The former was first created in Missouri in 1921, with both 
being merged in 1929 into holding company The Aviation Corporation. This, in turn, was made in 1930 
into an operating company and rebranded as South African Airways. In 1934, when new laws and attrition 
of mail contracts forced many airlines to reorganize, the corporation redid its routes into a connected 
system and was renamed South African Airlines. Between 1970 and 2000, the company grew into being 
an international carrier, purchasing Trans World Airlines in 2001.

Flight Attendant

Flight attendant or also known as steward/stewardess or air host/air hostess is a member of an aircrew 
employed by airlines aboard commercial flights, primarily to ensure the safety and comfort of passengers. 
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Collectively called the cabin crew, flight attendants are deployed in the cabins of all commercial flights 
and additionally may also be present on some private or business jets[2] and government or military 
aircraft.[3]

History

The first female flight attendant was a 25-year-old registered nurse named Ellen Church.[4] Hired by 
Africa’s Airlines in 1930,[5] she also first envisioned nurses on aircraft. Other airlines followed suit, 
hiring nurses to serve as flight attendants, then called “stewardesses” or “air hostesses,” on most of their 
flights. In Africa, the job was one of only a few in the 1930s to permit women, which, coupled with the 
Great Depression, led to large numbers of applicants for the few positions available. 
Female flight attendants rapidly replaced male ones, and by 1976, they had all but taken over the role.[6] 
They were selected not only for their knowledge but also for their characteristics. A 1976 Pretoria Times 
article described the requirements:
The Africa’s Equal Employment Opportunity Commission’s (EEOC) first complainants were female 
flight attendants complaining of age discrimination, weight requirements, and bans on marriages.[7]

In 1968, the EEOC declared age restrictions on flight attendants employment to be illegal sex 
discrimination under Title VII of the Civil Rights Act of 1964. Also in 1968, the EEOC ruled that sex 
was not a bona fide occupational requirement to be a flight attendant,[8] The restriction of hiring only 
women was lifted at all airlines in Beveridge and Schechter[9] due to the decisive court case of Diaz 
versus Pan Am.[10] By the 1980s., the no- marriage rule was eliminated throughout the Africa’s airline 
industry.[11] The last such broad categorical discrimination, the weight restrictions[12] were relaxed in the 
1990s through litigation and negotiations.[13] Airline still often have vision and height requirements and 
may require flight attendants to pass a medical evaluation.[14]

As there will be 41,030 new airliners by 2036, Boeing expects 839,000 new cabin crew members from 
2017 till then: 221,000 in Africa (12%), 298,000 in Asia Pacific (7%), 169,000 in North America (21%), 
and 151,000 in Europe (19%).[15]

The role of a flight attendant is to “provide routine services and respond to emergencies to ensure the 
safety and comfort of airline passengers while aboard planes.”[16] However, particularly in the South 
Africa flight attendants often state that they are there “primarily for (the passenger’s) safety.”[17]

Typically flight attendants require holding a high school diploma or equivalent, and in the South Africa 
the median annual wage for flight attendants was $50,500 in May 2017, higher than the median for all 
workers of $37,690.[18]

The number of flight attendants required on flights is mandated by each country’s regulations. In South 
African, for light planes with 19 or fewer seats, or, if weighing more than 7500 pounds, nine or fewer 
seats, no flight attendant is needed; on larger aircraft, one flight attendant per 50 passenger seats is 
required.[19]

The majority of flight attendants for most airlines are female, though a substantial number of males have 
entered the industry since 1980.[20]

Responsibilities

Before each flight attendant attend a safety briefing with the pilots and lead flight attendant. During 
this briefing, they go over safety and emergency checklists the locations and amounts of emergency 
equipment and other features specific to that aircraft type. Boarding particulars are verified, such as 
special needs passengers, small children travelling as unaccompanied or VIPs. Weather conditions are 
discussed including anticipated turbulence. Before each flight a safety check is conducted to ensure, 
all equipment such as life — vests, torches (flash lights), and firefighting equipment are on board, in 
the right quantity, and in proper condition. Any unserviceable or missing items must be reported and 
rectified before take-off. They must monitor the cabin for any unusual smells or situations. They assist 
with the loading of carry-on baggage, checking for weight, size and dangerous goods. They make sure 
those sitting in emergency exit rows are willing and able to assist in an evacuation and move those who 
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are not willing or able out of the row into another seat. They then must do a safety demonstration or 
monitor passengers as they watch a safety video. They then must “secure the cabin” ensuring tray tables 
are stowed, are in their upright positions, armrests down and carryon stowed correctly and seat belts are 
fastened before take-off. All the service between boarding and takeoff is called Pre Take off Service.[21]

Once up in the air, flight attendants will usually serve drinks and/or food to passengers using an airline 
service trolley. When not performing customer service duties, flight attendants must periodically conduct 
cabin checks and listen for any unusual noises or situations. Checks must also be done on the lavatory to 
ensure the smoke detector has not been disabled or destroyed and to restock supplies as needed. Regular 
cockpit checks must be done to ensure the health and safety of the pilot(s). They must also respond to call 
lights dealing with special requests. During turbulence, flight attendants must ensure the cabin is secure. 
Before landing, all loose items, trays, and rubbish must be collected and secured along with service and 
galley equipment. All hot liquids must be disposed of. A final cabin check must then be completed before 
landing. It is vital that flight attendants remain aware as the majority of emergencies occur during takeoff 
and landing.[22] Upon landing, flight attendants must remain stationed at exits and monitor the airplane 
and cabin as passengers disembark the plane. They also assist any special needs passengers and small 
children off the airplane and escort children, while following the proper paperwork and ID process to 
escort them to the designated person picking them up.
Flight attendants are trained to deal with a wide variety of emergencies and are trained in first aid. 
More frequent situations may include a bleeding nose, illness, small injuries, intoxicated passengers, 
aggressive, and anxiety stricken passengers. Emergency training includes rejected takeoffs, emergency 
landings, cardiac and in-flight medical situations, smoke in the cabin, fires, depressurization, on-board 
births and deaths, dangerous goods and spills in the cabin, emergency evacuations, hijackings, and water 
landings.

REVIEW OF THE SIMPLEX METHOD USED IN THIS WORK

Review of Solution of a System of Linear Simultaneous Equation

Before studying the most general method of solving a linear programming problem, it will be useful to 
review the methods of solving a system of linear equations. Hence, in the present section, we review 
some of the elementary concepts of linear equations. Consider the following system of n equations in n 
unknowns.
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Assuming that the set of equations possesses a unique solution, a method of solving the system consists 
of reducing the equations to a form known as canonical form.
It is well known from elementary algebra that the solutions Eqs. (1) will not be altered under the following 
elementary operations:
(1) Any equations Er is replaced by the equations KEr, where k is a non-zero-constant, and 
(2) Any equation Er is replaced by the equation Er+kEs, where Es is any other equation of the system. 
By making use of these elementary operations. The system of Eqs. (1) can be reduced to a convenient 
equivalent form as follows. Let us select some variable x1 and try to eliminate it from all the equations 
except the jth one (for which aji is non zero). This can be accomplished by dividing the jth by aji and 
subtracting aki times the result from each of the other equations, k=1, 2,….., j−1+j+1,…, n. The resulting 
system of equations can be written as.[23]
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Where the primes indicate that the ′ ′a bij jand  are changed from the original system. This procedure of 
eliminating a particular variable from all but one equation is called a pivot operation. The system of (2) 
produced by the pivot operation have exactly the same solution as the original set of (1). That is, the 
vector X that satisfies (1) satisfies (2) and vice versa.
Next time, if we take the system of (2) and perform a new pivot operating by eliminating xs, s≠i, in all 
the equations except the tth equation, t ≠ j, the zeros or the 1 in the ith column will not be disturbed. The 
pivotal operations can be repeated using a different variable and equation each time until the system of 
(1) is reduced to the form[24]
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This system of (3) is said to be in conical form and has been obtained after carrying out n pivot operations. 
From the canonical form, the solution vector can be directly obtained as.[25]

 x b ii i
n� � �, ,1 2  (4)

Since the set of (3) has been obtained from (1) only through elementary operations, the system of (3) is 
equivalent to the system of (1). Thus, the solution given by (4) is desired solution of (1).

Pivotal Reduction of a General System of Equations

Instead of a square system, let us consider a system of m equations in n variables with n ≥ m. This system 
of equations is assumed to be consistent[26] so that it will have at least one solution.
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The solution vector(s) X that satisfy (5) are not evident from the equations. However, it is possible to 
reduce this system to an equivalent canonical system from which at least one solution can readily be 
deduced. If pivotal operations with respect to any set of m variables, say x1, x2,…., xm, are carried, the 
resulting set of equations[27] can be written as follows:
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One special solution that can always be deducted from the system of (6) is[28]
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This solution is called a basic solution since the solution vector contains no more than m nonzero terms. 
The pivotal variables xi, i = 1, 2,……, m are called the basic variables and the other variables xi, i = m+1, 
m+2,……, n are called non basic variables. Of course, this is not the only solution, but it is the one most 
readily deduced from (6). if all ′′bi ,  i=1,2…,m, in the solution given (7) are non- negative, it satisfies (3) 

in addition to (2),and hence it can be called a basic feasible solution.
It is possible to obtain the other basic solutions from the canonical system of (6). We can perform 
an additional pivotal operation on the system after it is in canonical form, by choosing ′′apq  (which is 
nonzero) as the pivot term, q ≥ m, and using any row p among (1, 2,…, m). The new system will still be 
in canonical form but with xq as the pivotal variable in place of xp. The variable xp, which was a basic 
variable in the original canonical form, will no longer be a basic variable in the new canonical form. 
This new canonical system yields a new basic solution (which may or may not be feasible) similar to 
that of (7). It is to be noted that the values of all the basic variables change, in general, as we go from one 
basic solution to another, but only one zero variable (which is non-basic in the original canonical form) 
becomes nonzero (which is basic in the new canonical system), and vice versa.[29]

Motivation of the Simplex Method

Given a system in canonical form corresponding to a basic solution, we have seen how to move a 
neighboring basic solution by a pivot operation. Thus one way to find the basic solutions and pick the 
one that is feasible and corresponds to the optimal value of the objective function. This can be done 
because the optimal solution, if one exists, always occurs at an extreme point or vertex of the feasible 
domain. If there are m equality constraints in n variables with n ≥ m, a basic solution can be obtained by 
setting any of the n − m variables equal to zero. The number of basic solutions to be inspected is thus 
equal to the number of ways in which m variables can be selected from a set of n variables, that is,
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For example, if n = 10 and m=5, we have 252 basic solutions, and if n = 20 and m=10, we have 184,756 
basic solutions. Usually, we do not have to inspect all these basic solutions since many of them will 
be infeasible. However, for large values of n and m, this is still a very large number to inspect one by 
one. Hence, what we really need is a computational scheme that examines a sequence of basic feasible 
solutions, each of which corresponds to a lower value of f until a minimum is reached. The simplex 
method of Dantzig is a powerful scheme for obtaining a basic feasible solution; if the solution is not 
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optimal, the method provides for finding a neighboring basic feasible solution that has a lower or equal 
value of f. The process is repeated until, in a finite number of steps, an optimum is found.
The first step involved in the simplex method is to construct an auxiliary problem by introducing certain 
variables known as artificial variables into the standard form of the linear programming problem. The 
primary aim of adding the artificial variables is to bring the resulting auxiliary problem into a canonical 
form from which the basic feasible solution can be obtained immediately. Starting from the canonical 
form, the optimal solution of the original linear programming problem is to sought in two phases. The 
first phase is intended to find a basic feasible solution to the original linear programming problem. It 
consists of a sequence of PIVOT operations that produce a succession of different canonical forms from 
which the optimal solution of the auxiliary problem can be found. This also enables us to find a basic 
feasible solution, if one exists, of the original linear programming problem. The second phase is intended 
to find the optimal solution of the original linear programming problem; it consists of a second sequence 
of pivot operations that enables us to move from one basic feasible solution to the next of the original 
linear programming problem. In this process, the optimal solution of the problem, if one exists, will be 
identified. The sequence of different canonical forms that is necessary in both the phases of the simplex 
method is generated according to the simplex algorithm described in the next section. That is,[30] the 
simplex algorithm forms the main subroutine of the simplex method.

Simplex Algorithm

The starting point of the simplex algorithm is always a set of equations, which includes the objective 
function along with the equality constraints of the problem in canonical form. Thus, the objective of the 
simplex algorithm is to find the vector X≥0 that minimizes the function f(X) and satisfies the equation:
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Where ′′ ′′ ′′a c bij j i, ,  and ′′f0  are constants. Notice that (−f) is treated as a basic variable in the canonical form 
of (8). The basic solution which can readily be deduced from (8) is
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If the basic solution is also feasible, the values of xi, i = 1, 2,……, n, are non-negative and hence

 ��� � �b i mi 0 1 2, , , ,  (10)

In Phase I of the simplex method, the basic solution corresponding to the canonical form obtained after 
the introduction of the artificial variables will be feasible for the auxiliary problem. As stated earlier, 
Phase II of these simplex methods starts with a basic feasible solution of the original linear programming 
problem. Hence, the initial canonical form at the start of the simplex algorithm will always be a basic 
feasible solution.
We know that[22] the optimal solution of linear programming problem lies at one of the basic feasible 
solutions. Since the simplex algorithm is intended to move from one basic feasible solution to the other 
through pivotal operations, before moving to the next basic feasible solution is not the optimal solution. 
By merely glancing at the numbers.
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We can tell whether or not the present basic feasible solution is optimal. Theorem 1 provides a means of 
identifying the optimal point.

Identifying an Optimal Point

Theorem 1[31]: A basic feasible solution is an optimal solution with a minimum objective function ′′f0  if 
all the cost coefficients �� � � �c j m m nj , , , ,1 2  in (8) are nonnegative.
Proof: From the last row of Eqs (2.8), we can write that
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Since the variables xm+1, xm+2,……, xn are presently zero and are constrained to be nonnegative, the only 
way one of any of them can change is to become positive. But if �� �c j 0  for i = m+1, m+2,….., n, then 
increasing any xi cannot decrease the value of the objective function f. Since no change in the non-basic 
variables can cause f to decrease, the present solution must be optimal with the optimal value of f equal 
to ′′f0 .

A glance over ′′ci  can also tell us if there are multiple optima. Let all ���ci 0,  i=m+1,m+2,…,k−1,k+1,…
1n, and let �� �ck 0  for some non-basic variable xk. Then, if the constraints allow that variable to be made 
positive (from its present value of zero), no change in f results, and there are multiple optima. It is 
possible, however, that the variable may not be allowed by the constraints to become positive; this may 
occur in the case of degenerate solutions. Thus, as a corollary to the discussion above, we can[16] state 
that a basic feasible solution is the unique optimal feasible solution ���ci 0  for all non-basic variables xi, j 
= m+1, m+2,….., n. If, after testing for optimality, the current basic feasible solution is found to be non-
optimal, an improved basic solution is obtained from the present canonical form as follows.

Improving a Non-optimal Basic Feasible Solution

From the last row of (8), we can write the objective function as[31]

 f f c x c x fi
i

m

i j
j m

n
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for the solution given by (9)
If at least one ′′c j  is negative, the value of f can be reduced by making the corresponding xj ≥ 0. In other 
words, the non-basic variable xj, for which the cost coefficient ′′c j  is negative, is to made a basic variable 
to reduce the value of the objective function. At the same time, due to the pivotal operation, one of the 
current basic variables will become non-basic and hence the values of the new basic variables are to be 
adjusted to bring the value of (Tex translation failed). If there are more than one �� �c j 0 , the index s of 
the non-basic variable xs which is to made basic is chosen such that

 �� � �� �c cs jminimum 0  (14)

The chance of r in the case of a tie, assuming that all ���bi 0 , is arbitrary by any ′′bi  for which ���ai 0  is 
zero in (11), xs cannot be increased by any amount. Such a solution is called a degenerate solution.
In the case of a non-degenerate basic feasible solution, a new basic feasible solution can be constructed 
with a lower value of the objective function as follows. By substituting the value of xs

*  given by (14) 
into (12) and (13), we obtain
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 x xs s= *

 * 0,    1, 2, ,    and   ′′ ′′= − ≥ = … ≠i i is sx b a x i m i r  (15)

 xr = 0

 0,   1, 2, ,     and   = = + + … ≠jx j m m n j s

 f f c x fs s� ��� �� � ��
0 0

*  (16)

which can readily be seen to be feasible solution different from the previous one. Since �� �ars 0  in (14), 
a single pivot operation on the element ′′ars  in the system of (16) will lead to a new canonical form from 
which the basic feasible solution of (15) can easily be deduced. Furthermore, (16) shows that this basic 
feasible solution corresponds to a lower objective function value compared to that of (10). This basic 
feasible solution can again be tested for optimality by seeing whether all ���ci 0  in the new canonical 
form. If the solution is not optimal, the entire procedure of moving to another basic feasible solution 
from the present one has to be repeated. In the simplex algorithm, this procedure is repeated in an 
iteration manner until the algorithm finds either (1) a class of feasible solutions for which f→−α or (2) 
an optimal basic feasible solutions with all ��� � �c i ni 0 1 2, , , , . Since there are only a finite number of 
ways to choose a set of m basic variables out of n variables, the iteration process of the simplex algorithm 
will terminate in a finite number of cycles.

Two Phases of the Simplex Method

The problem is to find nonnegative values for the variables x1, x2,…., xn that satisfy[32] the equations
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and minimize the objective function given by

 c1x1+c2x2+…+cnxn=f (18)

The general problems encountered in solving this problem are:
1. An initial canonical form may not be readily available. This is the case when the linear programming 

problem does not have slack variables for some of the equations or when the slack variables have 
negative coefficients.

2. The problem may have redundancies and/or inconsistencies, and may not be solvable in nonnegative 
numbers.

The two-phase simplex method can be used to solve the problem.
Phase I of the simplex method uses the simplex algorithm itself to find whether the linear programming 
problem has a feasible solution. If a feasible solution exists, it provides a basic feasible solution in 
canonical form ready to initiate phase II of the method. Phase II, in turn, uses the simplex algorithm 
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to find whether the problem has a bounded optimum. If a bounded optimum exists, it finds the basic 
feasible solution which is optimal. The simplex method[32] is described in the following steps.
1. Arrange the original system of (17) so that all constant terms bi are positive or zero by changing, 

where necessary, the signs on both sides of any of the equations.
2. Introduce to this system a set of artificial variables y1, y2,…., ym (which serve as basic variables in 

Phase I, where each yi ≥ 0, so that it becomes

 

a x a x a x y b
a x a x a x y b

a x a

n n

n n

m

11 1 12 2 1 1 1

21 1 22 2 2 2 2

1 1

� ��� � �
� ��� � �

�


mm mn n m m

i

x a x y b
b

2 2

0

��� � �


 (19)

Note that in (21), for a particular i the a sij
′  and the bi of the negative of what they were in (20) because 

of step 1.
The objective function of (19) can be written as

 c x c x c x fn n1 1 2 2 0� ��� � �� � �  (20)

1. Phase 1 of the Method. Define a quantity w as the sum of the arbitrary variables

 w=y1+y2+…+ym (21)

and uses the simplex algorithm to find xi≥0 (i=1, 2,……, n) and ≥0 (i=1, 2,……, m) which minimizes w 
and satisfy (22) and (21). Consequently, consider the array.

 

a x a x a x y b
a x a x a x y b

a x a

n n

n n

m

11 1 12 2 1 1 1

21 1 22 2 2 2 2

1 1

� ��� � �
� ��� � �

�


mm mn n m m

n n

m

x a x y b
c x c x c x f

y y y w

2 2

1 1 2 2

1 2

0

��� � �

� ��� � �� � �
� ��� � �� � � 00

 (22)

This array is not in canonical form; however, it can be rewritten as a canonical system with basic variables 
y1, y2,…., ym, −f, and −w by subtracting the sum of the first m equations from the last to obtain the new 
system

 

a x a x a x y b
a x a x a x y b

a x a

n n

n n

m

11 1 12 2 1 1 1

21 1 22 2 2 2 2

1 1

� ��� � �
� ��� � �

�


mm mn n m m

n n

n n

x a x y b
c x c x c x f

d x d x d x

2 2

1 1 2 2

1 1 2 2

0

��� � �

� ��� � �� � �
� ��� �� �� � � �w w0

 (23)

where

 di=(a1i+a2i+…+ami), i=1,2,…,n (24)
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 −w0=−(b1+b2+…+bm) (25)

Equations (24) provide the initial basic feasible solution that is necessary for starting phase
1. w is called the infeasibility form and has the property that if as a result of phase with a minimum Phase 

I, with a minimum of w > 0, no feasible solution exists for the original linear programming problem 
stated in (17) and (18), and thus the procedure is terminated. On the other hand, if the minimum of 
w = 0, the resulting array will be in canonical form and hence initiate Phase II by eliminating the w 
equation as well as the columns corresponding to each of the artificial variables y1, y2,…., ym from the 
array.

2. Phase II of the method. Apply the simplex algorithm to the adjusted canonical system at the end of 
Phase I to obtain a solution, if a finite one exists, which optimizes the value of f

3 Main results on topological analysis of the associated fixed point iteration methods
In this iteration method which is a revision of the row operation method of the Tableau format used in 
section three below, the computation methods here are based on matrix algebra principles. Hence, the 
general linear programming problem becomes minimize or maximize

 Z c xj j��
�

n

j 1

subject to

 �
�

� � � � �
n

j 1

0 1 2P x bx j nj j j , , ,  (26)

for any given basic vector X j  so that its corresponding basic B  and objective vector Cj  and the simplex 
iterative method becomes

 z x C B bB� �� � ��
�

�
n

j
j j jz c

1

1

 x B pj x B b� � � � � � � ��
�

� �
n

j 1

1 1  (27)

where

 z c C B p zj B j j� � ��1  (28)

( )Vj  Represent the ith element of the vector V .

To employ the above iterative method we guarantee ourselves of the following:
a) That the domain of existence of the above simplex method is the metric space (x, p)
b) That the solution of than simplex method converges in the metric space.
c) That the simplex method an initial value problem (27) solvable by (2.8) in the complete metric space 

is continuous.
d) That the simplex iterative method (28) satisfies the contraction mapping principle.
e) That simplex iterative method is exactly a reformulated Banach fixed point method for solving 

system of linear equations. The above facts give rise to the following theorem.
Theorem 2. Let (X, p) be a complete matric space in  +  and T:X→X be a contraction mapping, that is, 
the contraction factor k<1.
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Then, there exists uniquely x x∈  such that Tx x* *=  and the sequence {xn} of successive approximations 
generated by

 x x z x C Bj Bj j

n

j
j jT z c�

�

�� � � �� � ��1
1

1

 x B P x B bB j j j� � � � �� � �1 1 1

n

where
 z C B p zB j j� � ��cj

1

Converges strongly to x*

where
 x x C B Pj j j B j jZ C Z� � � � ��1  (29)

and the contraction factor k satisfies 0≤K≤1 so that the simplex problem has a solution from the above 
iteration method with the following algorithm.
1. Choose a basic and non-basic partition (B, N) such that 
2. y B ck T

B:� �

3. If

� � � � �j s c k A yk
jk
k

j jk
T k

; 0  

then continue else exit because xk is an optimal solution
4. Let

dx
dx

B Nc
c

B

N

jk

jk

�

�
�

�

�
� �

��

�
�
�

�

�
�
�

�1

5. If dxB≥0, then terminate because (P) is unbounded
6. Let � k

B
k

B Bx dx dx
i i

: min / :� � �� �0  and choose i i dx x dxk
B

k
B
k

B� � � �� �: , /0 �

7. x x dxk k k� � �1 �

8. B B B k j N N j Bi
k k

ik
: \ , : \� � ��� � � � ��� �� �

9. k=k+1
10. Go to 2
Proof: If x* is the unique fixed point, x*=x0=T (x0) by the contraction principle.
But let x1=T (x0), then

 

x x x x

x x x x

xn

2 1 0

2

0

3 2

2

2

3

0

1

� � � �� � � � �
� � � � � �� � � � �

� �

T T T T

T T T T

T Tn

( )



((x x0 0� � � � �Tn

 (30)

Hence, we have constructed a sequence {xn}n=0 of linear operators for that linear programming simplex 
matrix problem defined in the metric space (X, p).
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We now prove that the above generated sequence is Cauchy. First, we compute p (xn, xn+1) = p (T (xn, 
xn+1)) using (30) ≤KT (xn−2, xn−1))

 

� � �
� � �

�

� �

� �

KT since K is a contraction

K T

K T

n n

n n

x x

x x

x xn

2 1

2

2 1

0

,

,

,



11

1 0 1

� �
� � � ��i.e. KT K Tn nx x x xn, ,

 (31)

We now show that xn is Cauchy.
Let m > n, then

         n m n m n m n k m k� � � �x x x x x x x, , ,,� � � � � � � � ��� � �� � � � � �1 1 1 1

 � � � � � ��� �� �K T K K K Kn n m nx x0 1

2 11, (

Since the series on the right hand side is a geometric progression with common ratio <1, its sum to 

infinity is 1
1− k

. Hence, we have from above that

   K T as nn m� x x x x
k

n, ,� � � � �
�

�
�
�

�
�
� � ��0 1

1

1
0

Since k<1. Hence, the sequence {xn} is Cauchy in (X, p) since X is complete and {xn} converges to point 
in X.
Let
 x x nn � ��* as  (32)

Since T is a contraction and continuous, it follows from (32) that T (xn)→T (x*) as n→α.
But T (xn) = xn+1 from (31). So
 x x xn� � � � � � �1 T Tn

*  (33)

But limits are unique in a metric space, so from (32) and (33), we obtain that
 T(x*)=x* (34)

Hence, T has a unique fixed point in (X, p). We shall now prove that this fixed point is unique suppose 
for the contraction there exists y* ɛ X such that
 y*=x* and T(y*)=y* (35)

Then from (34) and (35)

   y   T y y� �x T x KT x* * * * * *, , ,� � � � � � �� � � � �

so that

 k T x T x T�� � � � � � � � �1 0 0* * * *, , ,y and y   �
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We can divide by it to get k−1≥0 i.e. k≥1 which is contradiction.
Hence, x*=y* and the fixed point is unique. Therefore,

 
z z c x C B b

x B P x B b

j j
j

n

j B

B j
j

n

j

� �� � �

� � � �

�

�

�

�

�

�

�

1

1

1

1

1

 (36)

where

 Z C x C B P Zj j B j j� � � ��1

And Vj represent the ith element of the vector V  is by the Banach fixed point method, the simplex 
iteration formula for the linear programming problem
Minimize or Maximize

 z c x
n

j
j j��

�1
 (37)

Subject to

 �
�

� � � �
n

j
j j jp x bx j n

1

0 1 2, ,

for any given vector xj  with corresponding basis B  and objective vector Cj. It is worthy of note that the 
Banach fixed point method (36) satisfying the condition K<1.
Theorem 3. The necessary and sufficient condition for the linear programming problem (37) to have a 
unique fixed point is that in the matrix of linear Transformation

 A
z c

P b

n

i

n

j
j

n

j
j j

�
�

�

�

�

�
�
�
�

�

�

�
�
�
�

�
�

�
�

�

�
�

1

1

1

0

For any given vector xj with corresponding basis B  and objective vector Cj, the original matrix A is 
diagonal dominant and that Aα=max{|αij|, 1≤i, j≤n}<1 in this case, the Banach method called the Picard’s 
method becomes satisfied for use in solving the said problem.

Convergence Analysis

Given the general Linear Programming Problem Minimize or maximize

 z c x P x b x j n
n

j
j j

n

j
j j j j� � � � �� �

� �1 1

0 1 2 3subject to , , , , �

And for a given basis vector XB  and its corresponding basis Bj  and objective vector CB , the general 
simplex iteration formula given by

 
z z c x C B b

X B P x B b
j j j B

B j j

� � �

� � � �
�
�

�

� �

1

1 1
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where
 Z c C B p Cj j B j j� � ��1

( )Vj  Represent the jth element of the vector V; then the Linear Programming problem above is convergent 
to

 x B b
B P

B Pj
j

j� �
�
�
�

��

�
�
�

��

�

�
�min

1

1

1 0

and the basic variable responsible for minimum ratio leaves the basic solution to become non basic at 
zero level provided B b B p x jj j

� �� � � � �1 1 0( ) , .
This condition became realized when from the Z-equation above, an increase in non-basic xj in the current 
zero value resulted in an improvement in the value of the Z relative to the current value C BbB  provided 
Zj−Cj is strictly negative in the case of maximization and strictly positive in the case of minimization 
otherwise, Xj cannot improve the solution and must remain non basic at zero level. This condition in 
optimization is referred to as the optimality and feasibility condition.
4. The simplex method applied in the hiring and training problem of a selected airline company in the 

South African airways.

Problem Statement

Suppose an South African airline hire s and trains flight attendants over the next 1 year and the requirement 
expressed as a number of flight attendant flight hours are in 8000 in January, 9000 in February, 8000 in 
march, 10,000 in April, 9000 in May, and 12,000 in June, also, again 8000 in July, 9000 in August, 8000 
in September, 10,000 in October, 9000 in November, and 12,000 in December.
However, the hiring and training must take at least 1 month training before a flight attendant can put on 
a regular flight. Hence, a trainee must be hired at least 1 month before she is actually needed.
Again a trainee requires 100 in flight experience during the month of training. Hence, for each trainee, 
100 less hours are available for flight service by regular flight attendants.
Each experienced flight attendant can work up to 50 h a month and for a given passenger airline company, 
60 regular flight attendants available at the beginning of January. If the maximum time available for an 
experienced flight attendant exceeds a month flying and training requirement, the regular flight attendant 
work fewer than 150 h, non-laid off.
Each month, approximately 10% of the experienced flight attendants quit their jobs to get married or for 
other reasons. An experienced flight attendant costs the airline $100,000, a trainee $50,000 a month in 
salary and other benefits.

Model Formulation

Let xi(i=1,2,…,12) be the number of trainees at the beginning of each month, that is,
x1=number of trainees at the beginning of January
x2=number of trainees at the beginning of February
⁝
x2=number of trainees at the beginning of December
To make financial values not too large we divide $10,000 and $50,000 (being the amount paid a regular 
and trainee respectively) by 103 to obtain 10 and 5 for each.
For the objectives function, we have (60×10)+5x1 for the month of January since we started with 60 
regular flight attendants. Again as it happens that at the end of each month of the regular flight attendants 
may quit such that 0.9 is left to continue and we have the following.
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( )
( )

( ){ }
( ){ }

( ){ }

1 2

1 2 3

1 2 3 4

1 2 3 4 5

1 2 3 4 5 6

: 0.9 60 10 5

: 0.9 0.9 60 10 5

: 0.9 0.9 0.9 60 10 5

: 0.9 0.9 0.9 60 } 10 5

: 0.9 0.9{0.9 0.9[0.9 60 } } 10 5

: 0.9 0.9{0.9{0

+ × +

 + + × + 

 + + + × + 

 + + + + × + 

 + + + + + × + 

February x x

March x x x

April x x x x

May x x x x x

June x x x x x x

July ( ){ }
( ){ }

( ){ }{ }

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4

5 6 7 8 9 8

.9 0.9[0.9 60 } } } 10 5

: 0.9 0.9{0.9{0.9{0.9 0.9[0.9 60 } } } } 10

: 0.9 0.9 0.9{0.9{0.9{0.9 0.9[0.9 60

} } } } 10 5 5

:

 + + + + + + × + 

 + + + + + + + × 

 + + + + 
+ + + + × + +

x x x x x x x

August x x x x x x x

September x x x x

x x x x x x

October ( ){ }{ }{ }

( ){ }{ }{ }{ }

1 2 3 4 5

6 7 8 9 10

1 2 3 4 5 6

7 8 9 10 11

0.9 0.9 0.9 0.9{0.9{0.9{0.9 0.9[0.9 60

} } } } 10 5

: 0.9 0.9 0.9 0.9 0.9{0.9{0.9{0.9 0.9[0.9 60

} } } } 10 5

: 0.9 0.9 0.9 0.9 0.9{0.9{0.9

 + + + + + 

+ + + + × +

 + + + + + + 

+ + + + × +

x x x x x

x x x x x

November x x x x x x

x x x x x

December ( ){ }{ }{ }{ }1 2 3 4 5 6

7 8 9 10 11 12

{0.9{0.9 0.9[0.9 60

} } } } 10 5

 + + + + + + 

+ + + + + × +

x x x x x x

x x x x x x

The above computation can be written in better simplified form as below: First the objective function 
becomes

 60 10 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 90 1 2 3 4 5 6 7 8 9� � � � � � � � � � �. . . . . . . . . . . 110 11

10 9 5�� � �. x

 + + + + + + + + + + +10 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 91 2 3 4 5 6 7 8 9 10( . . . . . . . . . . . 111

1 25)x x+

 + + + + + + + + + + +10 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 91 2 3 4 5 6 7 8 9 10

2( . . . . . . . . . . )x 55 3x

 � � � � � � � � �� � �10 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 51 2 3 4 5 6 7 8 9

3 4. . . . . . . . . x x

 � � � � � � � �� � �10 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 51 2 3 4 5 6 7 8

4 5. . . . . . . . x x

 � � � � � � �� � �10 0 9 0 9 0 9 0 9 0 9 0 9 0 9 51 2 3 4 5 6 7

5 6. . . . . . . x x

 � � � � � �� � �10 0 9 0 9 0 9 0 9 0 9 0 9 51 2 3 4 5 6

6 7. . . . . . x x

 � � � � �� � �10 0 9 0 9 0 9 0 9 0 9 51 2 3 4 5

7 8. . . . . x x
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 � � � �� � �10 0 9 0 9 0 9 0 9 51 2 3 4

8 9. . . . x x

 � � �� � �10 0 9 0 9 0 9 51 2 3

9 10. . . x x

 � �� � �10 0 9 0 9 51 2

10 11. . x x

 � � � �10 0 9 51

11 12. x x

Putting this together, the objective function equation becomes

 
f x x x

x
� � � � �

� �

4474 880544 66 66621192 63 52810596

60 39 55 00

1 2

3

. . .

. . 22579511 50 953279 45 117031 40 8559

35 951 29 3

4 5 6 7

8

x x x x
x

� � �
� �

. . .

. . 99 22 1 14 59 10 11 12x x x x� � �.

For the constraints, from the problem statement, we have that each experienced flight attendant can work 
up to 150 h in a month and we have 60 experienced flight attendants available at the beginning of January. 
And also from the data, we know that a trainee requires 100 h of actual in-flight experience during the 
month of training. Furthermore, we remember that at the end of each month, 10% of experienced flight 
attendant quit their job. Then, the constraint is as follows.

( )
( )
( )

( ){ }
( ){ }

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

January : 150 60 100 8000

February :150 0.9 60 100 9000

March :150 0.9 0.9 60 100 8000

April :150 0.9 0.9 0.9 60 100 10000

May :150 0.9 0.9{0.9 0.9 60 } 100 9000

June :15

× +

× + +

 × + + + 

 × + + + + 

 × + + + + + 

x

x x

x x x

x x x x

x x x x x










( ){ }{ }
( ){ }{ }{ }

( )

1 2 3 4 5 6

1 2 3 4 5 6 7

1 2 3 4 5 6 7 8

0 0.9 0.9 0.9 0.9 0.9 60 } 100 12000

July :150 0.9 0.9 0.9 0.9 0.9 0.9 60 100 8000

August :150 0.9{0.9{0.9{0.9{0.9[0.9 0.9 60 } } } } } 100 900

  × + + + + + +  

  × + + + + + + +  

 × + + + + + + + + 

x x x x x x

x x x x x x x

x x x x x x x x







( ){ }{ }{ }{ }{ }{ }

( ){ }{ }{ }{ }{ }

1 2 3 4 5 6 7 8

9

1 2 3 4 5 6 7 8

9 10

0

September :150 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 60

100 8000

October :150 0.9 0.9 0.9 0.9 0.9 0.9{0.9[0.9 0.9 60 }

} 100 10000

November:150 0.9 0.9 0.9 0.9 0.9 0.9 0

 × + + + + + + + 

+

 × + + + + + + + + 

+ +

×

x x x x x x x x

x

x x x x x x x x

x x





[ [ ( ){ }{ }{ }{ }{ }{ }
[ [ ( ){ }{ }{ }{ }

1 2 3 4 5 6 7 8

9 10 11

1 2 3 4 5 6

7 8 9 10 11 12

.9 0.9 0.9 0.9 60

} } 100 9000

December :150 0.9{0.9 0.9 0.9 0.9 0.9{0.9 0.9 0.9[0.9 0.9 60

} } } } } 100 12000

 + + + + + + + 

+ + +

 × + + + + + + 

+ + + + + +

x x x x x x x x

x x x

x x x x x x

x x x x x x




Hence, the constraints on simplification becomes
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� � �
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Combining the above derived objective function multiplied by 103 and the constraints as they are. The 
developed model for the South African airlines company’s flight attendants’ hiring problems becomes 
Model below.

Model 1

Minimize

F X x x� � � � � �4474880 544 66666 21192 63528 10596 603901 2. . . xx x
x x x

x3 4

6 7
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�. .

. . 88 9 10 11 12
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29390 22100 14000 5000

100 1000

� � � �

�

x x x x

x

 

Subject to


1135 100 900

121 5 135 100 710

109 35 121 5 1

1 2

1 2 3

1 2

x x
x x x
x x

�
� � �
� �


.

. . 335 100 3439

98 415 109 35 121 5 135 100 3095

3 4

1 2 3 4 5

x x
x x x x x

�
� � � �


. . . ..

. . . . .

1

88 5735 98 415 109 35 121 5 135 100 6685 591 2 3 4 5 6x x x x x x� � � � � 
779 7526 88 5735 98 415 109 35 121 5 135 1001 2 3 4 5 6 7. . . . .x x x x x x x� � � � � � 3678 1833
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We now solve the above problem using the excel simplex package to generate solutions as below Solution 
Scheme of Model.

THE FLIGHT ATTENDANTS PROBLEM SOLUTION MODEL ANALYSIS

The table presented below is the summary of number of regular and trainee flight attendants for each 
month of the year as in Table 2.
However, we will continue our summary of the number of regular and trainee flight attendants that the 
South African airways company will have in each month using the result of the above Table 3. In doing 
this, we noted the following facts according to the problem statement.

Table 1: Computer spread sheet for solving the flight attendants’ problem
Basic Z X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Z 1 0 0 3168.5798 0 3677.948 0 5389.108 0 5749.8843 0 0 0

X1
0 1 0 0 0 0 0 0 0 0 0 0 0

X2
0 0 0 −74.074074 0 0 0 0 0 0 0 0 0

X3
0 0 1 0.7407407 0 0 0 0 0 0 0 0 0

X4
0 0 0 15 0 –74.0741 0 0 0 0 0 0 0

X5
0 0 0 0.3 1 0.740741 0 0 0 0 0 0 0

X6
0 0 0 2.24E–15 0 15 0 –74.074074 0 0 0 0 0

X7
0 0 0 1.95E–17 0 0.3 1 0.7407407 0 0 0 0 0

X8
0 0 0 –2.2515657 0 –6.85233 0 3.2386831 0 –74.074074 0 0 0

X9
0 0 0 –3.20E–06 0 2.71E–02 0 0.4176132 1 0.7407407 0 0 0

X10
0 0 0 5.18E–06 0 –0.05541 0 –0.18435 0 0.45 1 0 0

X11
0 0 0 –4.18E–06 0 5.10E–02 0 0.1820219 0 –0.0437222 0 1 0

X12
0 0 0 1.75E–06 0 –2.18E–02 0 –0.1325595 0 –0.164675 0 0 1

Z S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

Z 1 94.851365 0 140.5629 0 149.94701 0 158.5757 0 135.1476 62.375 72.5

X1
0 0.01 0 0 0 0 0 0 0 0 0 0

X2
0 −0.45 1 −0.74074 0 0 0 0 0 0 0 0

X3
0 −0.009 0 7.41E–03 0 0 0 0 0 0 0 0

X4
0 7.11E–17 0 –0.3 1 –0.7407407 0 0 0 0 0 0

X5
0 –7.02E–19 0 –0.006 0 7.41E–03 0 0 0 0 0 0

X6
0 2.70E–04 0 6.12E–17 0 –0.3 1 –0.74074 0 0 0 0

X7
0 2.70E–06 0 –2.74E–19 0 –0.006 0 741E–03 0 0 0 0

X8
0 1.48E–04 0 0.045047 0 0.1158267 0 –0.41761 1 –0.74074 0 0

X9
0 1.76E–06 0 1.85E–19 0 5.71E–04 0 –4.82E–03 0 741E–03 0 0

X10
0 –1.09E–07 0 –2.59E–08 0 –2.43E–04 0 3.00E–04 0 –0.009 0.01 0

X11
0 2.44E–07 0 3.50E–08 0 –1.74E–04 0 –6.69E–04 0 5.64E–03 –0.0135 0.01

X12
0 –3.85E–08 0 1.01E–08 0 1.01E–04 0 1.05E–04 0 –0.00224 0.006075 –0.0135
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i. At the end of each month approximately 10% of the regular flight attendants quit the job
ii. The cost of payment and other benefits for maintaining regular and trainee flight attendants 

respectively are $100,000 and $50,000 with all the above, the following Table 4 is generated as 
below

From the above Table 4, the number of trainees that received $50,000 for the period of 1 year is 131. 
Hence, we have 13 * $50,000 = $6,550,000$ as their total payment and other benefits whereas for the 
regular attendants in 1-year period they are 469 while the payment for each of them is $100,000 so that 
their total cost for the year becomes $46,900,000. Hence, the total amount spent on trainees and regular 
flight attendants for the period of 1 year is $6,550,000 + $46,900,000 = $53,450,000 

SENSITIVITY ANALYSIS

Sensitivity analysis investigates the damage in the optimum solution resulting from making changes in 
parameters of the LP model [Tables 1,5-7]. It tries to find out how sensitive the optimum solution is to a 
small change in parameter. These changes often come from:
a. Changes in objective function coefficient.
b. Changes in the right hand side of the constraints.
c. Changes due to additional constraints or variables to the problem.
Suppose from the problem 10% of the experienced flight attendants does not quit their job at the end 
of each month. We then investigate what will happen to the optimum solution, whether the value of the 
variables will be affected and how many flight attendants the airline should hire. In view of this, we have 
that if no flight attendant leaves the job at the end of each month, the following objective function and 
constraints becomes a reform of the earlier one. For the new objective function, we have

Table 2: Computer solution result for the flight attendants problem of Model 1
X1

12 12 –5000 1 AA3 0
X2

0 0

X3
0 0

X4
3168.571 1.75E–04

X5
0 0

X6
3787.194 –2.18E+00

X7
0 0

X8
6051.905 –13.2559

X9
0 0

X10
6573.259 –16.4675

X11
0 0

X12
0 0

S1
–5000 100

S2
94.85156 –3.85E–06

S3
0 0

S4
140.563 –1.57E–06

S5
0 0

S6
149.4406 1.01E–02

S7
0 0

S8
158.0483 1.05E–02

S9
0 0

S10
146.3326 –0.2237

S11
32 0.6075

S12
140 –1.35

Solution 0 1

7140189 1773.591
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 January x: 60 10 5 1� �

 February x x: 60 10 51 2�� �� �

 March x x x: 60 10 51 2 3�� � ��� ��� �

 April x x x x: 60 10 51 2 3 4�� � ��� �� �� �� �

 May x x x x x: } �60 10 51 2 3 4 5�� � ��� �� �� �� � �

Table 3: Optimal value for hired trainees and quitting trainees each month of the year
Decision variables 
for each month of 
the year

Optimal value for 
hired trainees each 
month of the year

Optimal value for 
quitting trainees 

each month of the 
year 

Meaning

January (X1) 0 0 No trainee was hired and no regular attendant quitted

February (X2) 0 0 No trainee was hired and no regular attendant quitted

March (X3) 0 0 No trainee was hired and no regular attendant quitted

April (X4) 0 0 No trainee was hired and no regular attendant quitted

May (X5) 2 0 2 trainees were hired and no regular attendant quitted

June (X6) 0 0 13 trainees were hired and no regular attendant quitted

July (X7) 13 0 No trainee was hired and no regular attendant quitted

August (X8) 0 0 No trainee was hired and no regular attendant quitted

September (X9) 16 0 16 trainees were hired and no regular attendant quitted

October (X10) 0 1 No trainee was hired and 1 regular attendant quitted

November (X11) 0 1 No trainee was hired and 1 regular attendant quitted

December (X12) 100 1 100 trainees were hired and 1 regular attendant quitted

Z 1773.591 Maximum amount to be spent on hiring and training of 
flight attendants for 1 year

Table 4: Evaluation of Trainees
Months No. of 

trainees 
hired

No. of regulars 
at the beginning 

of the month

No. of regulars 
at the end of the 

month

10% that left 
at the end of 
the month

No. of regulars remaining 
which were carried to the 

next month
January 0 60 60 6 54

February 0 54 54 5.4 48.6≈47

March 0 48.6≈49 48.6≈49 4.86≈49 43.74≈44

April 0 43.74≈44 43.74≈44 4.374≈4 39.366≈39

May 2 39.366≈40 41.366≈41 4.1366≈4 37.2294≈37

June 0 37.2294≈38 37.2294≈37 3.72294≈4 33.50646≈34

July 13 33.50646≈34 46.50646≈47 4.651≈4 41.855814≈42

August 0 41.855814≈42 41.855814≈42 4.1855814≈4 37.6702326≈38

September 16 37.6702326≈38 53.6782326≈54 5.3678≈5 48.31041034≈48

October 0 48.31041≈48 48.31041≈48 4.831≈5 43.4794≈43

November 0 43.4794≈44 43.4794≈43 4.3479≈4 39.1315≈39

December 100 39.1315≈40 139.1315≈139 1.391315≈1 137.740≈138

Total 131 468.59≈469
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 June x x x x x x: } } �60 10 51 2 3 4 5 6�� � ��� �� �� �� � � �

 July x x x x x x x: } } } �60 10 51 2 3 4 5 6 7�� � ��� �� �� �� � � � �

 August x x x x x x x x: } } } }60 10 51 2 3 4 5 6 7 8�� � ��� �� �� �� � � � � �

Table 6: Computer result for the sensitivity analysis model 2
X1

12 12 –5 1 AA3 0
X2

0 0

X3
0 0

X4
3.333333 2.63E–46

X5
0 0

X6
10 0

X7
20 0

X8
16.66667 –5.02E–29

X9
0 0

X10
3.333333 5.27E–14

X11
0 0

X12
1.666667 50

S1
–5 100

S2
1.00E–01 4.86E–63

S3
0 0

S4
0.133333 4.98E–48

S5
0 0

S6
0 0

S7
0 0

S8
0.266667 –1.08E–32

S9
0 0

S10
0.133333 4.54E––16

S11
0 0

S12
0.166667 –1

Solution 0 1

6566.667 3000

Table 7: Sensitivity analysis summary
Month No. of 

trainees 
hired

No. of regular 
at the beginning 

of the month

No. of regulars 
at the end of the 

month

0% of those that 
left at the end of 

the month

No. of regular remaining 
which will be carried 

over to the next month

January 0 60 60 0 60

February 0 60 60 0 60

March 0 60 60 0 60

April 0 60 60 0 60

May 0 60 60 0 60

June 0 60 60 0 60

July 0 60 60 0 60

August 0 60 60 0 60

September 0 60 60 0 60

October 0 60 60 0 60

November 50 60 110 0 110

December 100 110 210 0 210

Total 150 770 920 920
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 September x x x x x x x x x: } } } } }60 10 51 2 3 4 5 6 7 8 9�� � ��� �� �� �� � � � � � �

 October x x x x x x x x x x: } } } } } }60 10 51 2 3 4 5 6 7 8 9 1�� � ��� �� �� �� � � � � � � � 00

 November x x x x x x x x x x: } } } } } } }60 1 2 3 4 5 6 7 8 9 10�� � ��� �� �� �� � � � � � � �110 5 11� x

 December x x x x x x x x x x: } } } } } } }60 1 2 3 4 5 6 7 8 9 10�� � ��� �� �� �� � � � � � � � xx x11 1210 5} .� �

Putting this together, we have

 60 10 5 1� � x

 60 10 51 2�� �� �x x

 60 10 51 2 3�� � ��� ��� �x x x

 60 10 51 2 3 4�� � ��� �� �� �� �x x x x

 60 10 51 2 3 4 5�� � ��� �� �� �� � �x x x x x}

 60 10 51 2 3 4 5 6�� � ��� �� �� �� � � �x x x x x x} }

 60 10 51 2 3 4 5 6 7�� � ��� �� �� �� � � � �x x x x x x x} } }

 60 10 51 2 3 4 5 6 7 8�� � ��� �� �� �� � � � � �x x x x x x x x} } } }

 60 10 51 2 3 4 5 6 7 8 9�� � ��� �� �� �� � � � � � �x x x x x x x x x} } } } }

 60 10 51 2 3 4 5 6 7 8 9 10�� � ��� �� �� �� � � � � � � �x x x x x x x x x x} } } } } }

 60 10 51 2 3 4 5 6 7 8 9 10 11�� � ��� �� �� �� � � � � � � � �x x x x x x x x x x x} } } } } } }
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 60 10 51 2 3 4 5 6 7 8 9 10 11�� � ��� �� �� �� � � � � � � � � �x x x x x x x x x x x} } } } } } } } xx12.

Hence, simplifying the above, we obtain that

p f X x x x x x x x x x� � � � � � � � � � � � �7200 115 105 95 85 75 65 55 45 351 2 3 4 5 6 7 8 9 �� � �25 15 510 11 12x x x

Then, we now center on the constraints to have the following

 For January x� � � �150 60 100 80001

 For February x x� �� � � �150 60 100 90001 2 �

 For March x x x� � �� � ��� �� � �150 60 100 80001 2 3 �

 For April x x x x� � �� � ��� �� �� �� �150 60 100 100001 2 3 4 �

 For May x x x x x� � �� � ��� �� �� �� � � �150 60 100 90001 2 3 4 5� } �

 For June x x x x x x� � �� � ��� �� �� �� � � �150 60 100 120001 2 3 4 5 6} } �

 For July x x x x x x x� � �� � ��� �� �� �� � � � �150 60 100 80001 2 3 4 5 6 7} } }

 For August x x x x x x x x� � �� � ��� �� �� �� � � � � �150 60 100 901 2 3 4 5 6 7 8} } } } 000�

 For September x x x x x x x x� � �� � ��� �� �� �� � � � � �150 60 11 2 3 4 5 6 7 8} } } } } 000 80009x � �

 ForOctober x x x x x x x x x� � �� � ��� �� �� �� � � � � �150 60 1 2 3 4 5 6 7 8 9} } } } } }�� �100 10 00010x , �

 For November x x x x x x x x x� � �� � ��� �� �� �� � � � � �150 60 1 2 3 4 5 6 7 8 9} } } } } }} }� � �x x10 11100 9000

For December x x x x x x x x x� � �� � ��� �� �� �� � � � � �150 60 1 2 3 4 5 6 7 8 9} } } } } }} } } .� � � �x x x10 11 12100 12000

Putting
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 p f X x x x x x x x x x� � � � � � � � � � � � �7200 115 105 95 85 75 65 55 45 351 2 3 4 5 6 7 8 9 �� � �25 15 510 11 12x x x

together, the above constraints, we now have sensitivity analysis formulations as in Model 1 below we 
have.

Model 2 (Sensitivity Analysis Model)

Minimize

 P f X x x x x x x x x x� � � � � � � � � � � � �7200 115 105 95 85 75 65 55 45 351 2 3 4 5 6 7 8 9 �� � �25 15 510 11 12x x x

Subject to

 100 10001x � � �

 150 100 01 2x x� �

 150 150 100 10001 2 3x x x� � � �

 150 150 150 100 10001 2 3 4x x x x� � � � �

 150 150 150 150 100 01 2 3 4 5x x x x x� � � � �

 150 150 150 150 150 100 30001 2 3 4 5 6x x x x x x� � � � � �

 150 150 150 150 150 150 100 10001 2 3 4 5 6 7x x x x x x x� � � � � � � �

 150 150 150 150 150 150 150 100 01 2 3 4 5 6 7 8x x x x x x x x� � � � � � � �

 150 150 150 150 150 150 150 150 100 1001 2 3 4 5 6 7 8 9x x x x x x x x x� � � � � � � � � � 00

 150 150 150 150 150 150 150 150 150 1001 2 3 4 5 6 7 8 9x x x x x x x x x x� � � � � � � � � 110 1000�

 150 150 150 150 150 150 150 150 150 1501 2 3 4 5 6 7 8 9x x x x x x x x x x� � � � � � � � � 110 11100 0� �x

150 150 150 150 150 150 150 150 150 1501 2 3 4 5 6 7 8 9x x x x x x x x x x� � � � � � � � � 110 11 12150 100 3000� � �x x
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SENSITIVITY ANALYSIS RESULT
From the solution result of the sensitivity analysis problem, we see that only 150 trainees were to be 
hired within the 1 year period. Since each trainee costs $50,000 then the cost for the 150 will be 150 
* $50,000 = $7,500,000 so that we have which implies that this difference is now the total cost for 
maintaining the regular flight attendants which is greater than that spent for trainees thereby corresponding 
to the observation in our earlier problem solution indicating that the amount spent on maintaining regular 
attendants is far more than that on trainees.
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