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ABSTRACT
Discriminant analysis is a multivariate techniques concerned with separating distinct sets of objects to 
previously defined groups. The procedure we intend to develop in this paper uses a less biased statistical 
technique than the conventional discriminant analysis and parallels to ranking procedure used by 
loan officers. A variety of univariate and multivariate statistical procedures as well as comprehensive 
validation methods are used to develop and test a best model. The resulting model obtains using SPSS, a 
statistical software to run the data, provides more accurate classification than other studies have shown, 
without violating assumption regarding discrimination.
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INTRODUCTION

Discrimination and classification are multivariate 
techniques concerned with separating distinct sets 
of objects (or observations) and with allocating 
new objects (observations) to previously defined 
groups. Discriminant analysis is rather exploratory 
in nature. As a separate procedure, it is often 
employed on a time basis to investigate observed 
differences when causal relationships are not 
well understood (Conover and Iman, 1980).[1] 
Discriminant analysis assumes that prior defined 
groups are usually distributed. If this assumption 
is not satisfied, certain parts of the analysis may be 
biased. Typically, logarithm data transformation 
is made and used in the discriminant procedure. 
However, such transformations may affect 
the interrelationships among the variables. An 
alternative transformation uses ranks (ordinal 
data), and this has been shown to perform 
comparably to conventional discriminant 
analysis which uses interval (cardinal) data while 
mitigating the multivariate normality problem 
(Harold et al., 2018).[2,3]

A loan application is commonly processed through 
two stages of evaluation and ranking. The first 
occurs when the loan officer counsels with each 

applicant(s) and ranks the applicants from best to 
worst using factors that the institution considers 
critical to delineate acceptable borrowers from 
those that should be rejected. The second stage 
occurs when the credit committee receives 
the higher ranked applications from the loan 
officer and conducts its own ranking from best 
to worst. The higher ranked applications in the 
final stage are then approved in order until the 
supply of loanable funds is exhausted. This is 
especially true during periods when demand for 
loan money is high.[4,5] Moore and Smith (2018)
presented a discriminant analysis approach that 
attempted to assess the markets for evidence of 
discriminatory lending practices on the part of 
financial institutions. The purpose of their study 
was to develop a model that allows both lenders 
and regulators to assess the equity of lending 
patterns within a given market. Due to the possible 
bias resulting from the violation of the normality 
assumption of discriminant analysis, Ingram and 
Fragler (1982)[5] used discriminant analysis, probit 
and logit models in a study of mortgage lending 
discrimination. None of these studies employing 
discriminant analysis considered ordinal data 
or the rank transformation approach. However, 
due to the problems associated with parametric 
discriminant analysis assumptions, and the 
ranking procedure used by lending institutions, 
such a procedure should be considered.
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Rank transformation discriminant analysis also has 
been used in empirical research.[6,7] Perry, Harry, 
and Peter (1985)and Perry and Cronan (1982) 
used this procedure to develop more accurate 
bond rating models.[8] Cronan et al. (2013) also 
used the procedure as an effective data editing 
methodology. Much of the lending literature 
contains research that has been conducted with 
the objective of detecting discriminatory practices 
within the models used by lenders to evaluate 
loan applications. The objective of this paper is 
to derive a model from ordinal ranking that can 
delineate accepted from rejected applications. 
Although detection of discrimination is not a 
primary objective, the factors contained within the 
model can be examined closely to determine if it 
is present. A comparison of ordinal discriminant 
analysis with the cardinal discriminant analysis 
found in the literature is useful since it illustrates 
the difference in results.
The hypothesis tested in this paper is that 
discriminant analysis using ordinal data will 
produce a better model for judging future 
applicants, than the traditional discriminant 
analysis using cardinal data.[7] The intent of the 
paper is to provide a less biased procedure for 
uncovering the critical factors used by a lender to 
delineate acceptable applications from those that 
should be rejected and to argues that a better model 
can be produced since its more closely replicates 
the loan evaluation process and is statistically 
more appropriate.

METHODOLOGY

A sample of 350 applications was obtained from 
the institutions. The data set consists of 200 
rejected applications and accepted application. 
Variables include risk return variables and 
discriminatory variables. The information for 
these variables was taken from their applications 
at the financial institutions. Predictor variables 
used in the development of the model include the 
following risk return measures: Applicant’s credit 
rating, applicant’s occupation, applicant’s tenure 
in occupation, loan to value ratio, neighborhood 
crime rate, remaining economic life, applicant’s 
total monthly payment to income ratio, and years 
to maturity.
Discriminant analysis is the classification of an 
observation X0, possibly multivariate, into one 
of several populations Π1, Π2… Πk which each 

have density functions. If these densities can 
be assumed to be normal with equal covariance 
matrices, then Fisher’s linear discriminant 
function (LDF) method is used. If the matrices 
are unequal, a quadratic discriminant function 
(QDF) is appropriate. These methods assume 
multivariate normality.[6,8] Conover and Iman 
(1980) and Moore and Smith (1975) suggested 
a transformation that applies to all distributions 
equally well, that is, the rank population. Using 
their terminology, let Xij be the jth observation 
factor from population i,j =1,2,…n and 
i=1,2,…k. The p components of Xij are denoted 
Xijm, m = 1,2,…p. The rank transformation 
method involves ranking the mth component of 
all observations Xij from the smallest, with rank 
1, to largest, with rank N=n1 + n2 +...+ nk. Each 
component m=1 to m=p is ranked separately. 
Simply stated, each variable value of the 
multivariate sample is replaced by its rank from 
1 to n of all the groups combined. Sample means 
and covariance matrices are computed on the 
ranks and the traditional LDF and QDF are used, 
hence the rank linear discriminant function. The 
rank transformation tends to minimize the outlier 
contamination problem and the non-normality 
problem caused by outliers. No knowledge of 
outliers or distribution form is necessary.

RESULTS AND ANALYSIS

Statistical software, SPSS 21 was used to run 
the data; the various results and the analysis are 
provided in Table 1:
The classification functions are used to assign 
cases to groups. There is a separate function for 
each group. For each case, a classification score 
is computed for each function. The discriminant 
model assigns the case to the group whose 
classification function obtained the highest score. 
The coefficients for years with current employer 

Table 1: Classifying customers as high or low credit 
risks
Classification function coefficients Previously 

defaulted
No Yes

Years with current employer 0.270 0.113

Years at current address 0.165 0.076

Debt to income ratio (×100) 0.261 0.413

Credit card debt in thousands −0.640 −0.259

(Constant) −3.624 −4.342

Fisher’s linear discriminant functions
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and years at current address are smaller for the 
yes classification function, which means that 
customers who have lived at the same address and 
worked at the same company for many years are 
less likely to default. Similarly, customers with 
greater debt are more likely to default.
The within-groups correlation matrix in Table 2 
shows the correlations between the predictors. 
The largest correlations occur between credit 
card debt in thousands and the other variables, 
but it is difficult to tell if they are large enough 
to be a concern. Look for differences between 
the structure matrix and discriminant function 
coefficients to be sure.
The group statistics Table 3 reveals a potentially 
more serious problem. For all four predictors, 
larger group means are associated with larger 
group standard deviations. In particular, look at 
debt-to-income ratio (×100) and credit card debt 
in thousands, for which the means and standard 
deviations for the yes group are considerably 
higher. In further analysis, you may want to 
consider using transformed values of these 
predictors.

Box’s Test of Equality of Covariance Matrices

The ranks and natural logarithms of determinants 
in Table 4 printed are those of the group 
covariance matrices tests null hypothesis of 
equal population covariance matrices. Box’s M 
tests the assumption of equality of covariances 
across groups. Log determinants are a measure 
of the variability of the groups. Larger log 
determinants correspond to more variable 
groups. Large differences in log determinants 
indicate groups that have different covariance 
matrices. Since Box’s M is significant, you 
should request separate matrices to see if it 
gives radically different classification results. 
See the section on specifying separate groups 
covariance matrices for more information.

Assessing Contribution of Individual 
Predictors

There are several tables that assess the contribution 
of each variable to the model, including the tests of 
equality of group means, the discriminant function 
coefficients, and the structure matrix.

Table 2: Checking collinearity of predictors
Pooled within-groups matrices

Correlation Years with 
current employer

Years at 
current address

Debt-to-income 
ratio (×100)

Credit card debt 
in thousands

Years with current employer 1.000 0.189 0.043 0.569

Years at current address 0.189 1.000 0.081 0.212

Debt-to-income ratio (×100) 0.043 0.081 1.000 0.400

Credit card debt in thousands 0.569 0.212 0.400 1.000

Table 3: Checking for correlation of group means and variances
Group statistics

Previously defaulted Mean Std. deviation Valid N (list wise)
Unweighted Weighted

No

Years with current employer 10.7188 7.62365 96 96.000

Years at current address 9.7708 7.55399 96 96.000

Debt-to-income ratio (×100) 8.7927 5.08223 96 96.000

Credit card debt in thousands 1.4678 1.77583 96 96.000

Yes

Years with current employer 5.2564 6.02939 39 39.000

Years at current address 5.5897 5.53799 39 39.000

Debt-to-income ratio (×100) 16.6538 9.16730 39 39.000

Credit card debt in thousands 2.3095 2.65118 39 39.000

Total

Years with current employer 9.1407 7.59533 135 135.000

Years at current address 8.5630 7.26431 135 135.000

Debt-to-income ratio (×100) 11.0637 7.41173 135 135.000

Credit card debt in thousands 1.7110 2.09179 135 135.000
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Each test displays the results of a one-way ANOVA 
for the independent variable using the grouping 
variable as the factor. If the significance value is 
greater than 0.10, the variable probably does not 
contribute to the model. According to the results in 
Table 5, every variable in the discriminant model 
is significant. Wilks’ lambda is another measure of 
a variable’s potential. Smaller values indicate the 
variable is better at discriminating between groups. 
Table 5 suggests that debt-to-income ratio (×100) is 
best, followed by years with current employer, credit 
card debt in thousands, and years at current address.
The standardized coefficients allow you to compare 

variables measured on different scales. Coefficients 
with large absolute values correspond to variables 
with greater discriminating ability. Table 6 
downgrades the importance of debt-to-income ratio 
(×100), but the order is otherwise the same.
The structure matrix shows the correlation of each 
predictor variable with the discriminant function. 
The ordering in the structure matrix is the same 
as that suggested by the tests of equality of group 
means and is different from that in the Table 7. 
This disagreement is likely due to the collinearity 
between years with current employer and credit 
card debt in thousands noted in the correlation 
matrix. Since the structure matrix is unaffected by 
collinearity, it’s safe to say that this collinearity 
has inflated the importance of years with current 
employer and credit card debt in thousands in 
the standardized coefficients table. Thus, debt-to-
income ratio (×100) best discriminates between 
defaulters and non-defaulters.

Assessing Model Fit

In addition to measures for checking the 
contribution of individual predictors to your 
discriminant model, the discriminant analysis 
procedure provides the eigenvalues in Table 8 and 
Wilks’ lambda Table 9 for seeing how well the 
discriminant model as a whole fits the data.
First canonical discriminant functions were used 
in the analysis the eigenvalues table provides 
information about the relative efficiency of each 
discriminant function.
When there are two groups, the canonical 
correlation is the most useful measure in the 
table, and it is equivalent to Pearson’s correlation 
between the discriminant scores and the groups.
Wilks’ lambda is a measure of how well each 
function separates cases into groups. It is equal to the 
proportion of the total variance in the discriminant 
scores not explained by differences among the 
groups. Smaller values of Wilks’ lambda indicate 
greater discriminatory ability of the function. The 
associated Chi-square statistic tests the hypothesis 
that the means of the functions listed are equal 
across groups. The small significance value 
indicates that the discriminant function does better 
than chance at separating the groups.

Table 4: Checking homogeneity of covariance matrices
Log determinants

Previously defaulted Rank Log determinant
No 4 11.992

Yes 4 11.863

Pooled within-groups 4 12.370

Table 5: Test results
Parameter Values
Box’s M 55.091

F

Approx. 5.275

df1 10

df2 25324.568

Sig. 0.000

Table 6: Tests of equality of group means
Tests of equality 
of group means

Wilks’ 
lambda

F df1 df2 Sig.

Years with current 
employer

0.893 15.943 1 133 0.000

Years at current 
address

0.931 9.790 1 133 0.002

Debt-to-income 
ratio (x100)

0.767 40.363 1 133 0.000

Credit card debt in 
thousands

0.966 4.611 1 133 0.034

Table 7: Standardized canonical discriminant function 
coefficients
Standardized canonical 
discriminant function coefficients

Function

Years with current employer −0.682

Years at current address −0.379

Debt-to-income ratio (x100) 0.598

Credit card debt in thousands 0.475

Table 8: Eigenvalues
Function Eigenvalue % of variance Cumulative % Canonical correlation
1 0.573a 100.0 100.0 0.603
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The classification Table 11 shows the practical 
results of using the discriminant model. Of the cases 
used to create the model, 32 of the 39 people who 
previously defaulted are classified correctly. Eighty 
of the 96 non-defaulters are classified correctly. 
Overall, 83.0% of the cases are classified correctly.
About 76.9% of these cases were correctly 
classified by the model. This suggests that, 
overall; your model is in fact correct about 3 
out of 4 times. The 150 ungrouped cases are the 
prospective customers, and the results here simply 
give a frequency table of the model predicted 
groupings of these customers.

CONCLUSION

In this paper, the hypothesis examined was that 
a model could be produced that would better 
explain the factors used by loan officers to 
delineate acceptable loan applicants from those 
that should be rejected as shown Table 10. The 
purpose of the study was to better replicate the 
ranking conducted by the loan officer and the 
credit committee before approving or rejecting 
the loan request. The resulting model that 
was obtained from the analysis, by the use of 
discriminant analysis on ordinal data from a set 
of 350 accepted and rejected loan application, 
produced a better model. The factors contained 
in the model developed in this paper did not 
violate any law or assumption on discrimination, 
but were discriminatory in the sense that the 
variables utilized for loan approval or non-
approval were financial in nature. The model 
correctly classified 83% of the loan applications. 
This implies that if the model is used by lenders, 
they should correctly classify a loan application 
as acceptable or unacceptable 83% of the time.
This study used a less biased statistical procedure 
and comprehensive validation procedures. No 
evidence of discrimination overall was found, 
however, the classification results suggest that 
certain discriminatory factors may possibly exist 
when rejecting a loan application. It should be 
noted that the variables used in the study were 
obtained from the applications. Some of these 
variables represented what they intended, but 
others were surrogates for risk. The discriminant 
analysis uses only the variables in the model, 
was as the lender may use additional values 
on the applications as additional measures of 
risk. Furthermore, lenders are conservative. It 
is their right to ensure an adequate return at a 
minimum level of risk. The applications that the 
discriminant analysis model deemed marginally 
acceptable were considered too risky by the 
lender, therefore, giving a lower classification 
rate and the appearance of discrimination. Even 
if the exact variables were used by the lender 
and the model, the weighting could by slightly 
different and again result in a lower rate. The 
results of this study suggest that lenders are not 
discriminating; they are doing as expected, by 
being conservative by rejecting marginal loan 
applications.

Table 10: Structure matrix
Structure matrix Function
Debt-to-income ratio (×100) 0.728

Years with current employer −0.457

Years at current address −0.358

Credit card debt in thousands 0.246

Pooled within-groups correlations between discriminating variables and 
standardized canonical discriminant functions. Variables ordered by absolute size 
of correlation within function

Table 9: Wilks’ lambda
Wilks’ lambda

Test of 
function (s)

Wilks’ 
lambda

Chi‑square df Sig.

1 0.636 59.324 4 0.000

Table 11: Model validation
Classification 
resultsb,c,d

Previously 
defaulted

Predicted group 
membership

Total

No Yes
Cases selected

Original

Count No 80 16 96
Yes 7 32 39

% No 83.3 16.7 100.0
Yes 17.9 82.1 100.0

Cross-validateda

Count No 79 17 96
Yes 8 31 39

% No 82.3 17.7 100.0
Yes 20.5 79.5 100.0

Cases not selected

Original

Count No 39 10 49
Yes 5 11 16
Ungrouped cases 102 48 150

% No 79.6 20.4 100.0
Yes 31.3 68.8 100.0
Ungrouped cases 68.0 32.0 100.0

a. Cross-validation is done only for those cases in the analysis. In cross-validation, 
each case is classified by the functions derived from all cases other than that 
case. b. 83.0% of selected original grouped cases correctly classified. c. 76.9% 
of unselected original grouped cases correctly classified. d. 81.5% of selected 
cross-validated grouped cases correctly classified
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