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ABSTRACT
In this paper, the discrete schemes of extrapolated block Adams Moulton methods were obtained through 
the continuous formulation of the linear multistep collocation method by matrix inversion approach for 
the numerical solutions of first-order delay differential equations (DDEs) without the use of interpolation 
techniques in evaluating the delay term. The delay term was computed by a valid idea of sequence. The 
advantages, convergence, stability analysis, and central processing unit time at a constant step size b of 
the proposed method over other existing methods are pointed out.
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INTRODUCTION

The rising of mathematical problems in real-life situations has drawn so much attention in all disciplines 
and needs to be address properly. Most scholars have demonstrated the application of numerical methods 
in the solution of delay differential equations (DDEs) in the field of engineering, physics, medicine, and 
economics using interpolation techniques such as Hermite, Nordsieck, and Newton divided difference 
and Neville’s interpolation in evaluating the delay term as studied by Tziperman et al., Bocharov et al., 
Oberle, and Pesh, Evans and Raslan, Seong and Majid.[1-6] Real-life situations have shown that delays 
can be seen everywhere and ignoring it means ignoring reality because the solution of DDEs takes into 
account the current state and the history part of the system being modeled whereas the evolution of 
ODEs depends only on the current state. The DDEs are differential equations in which the derivatives of 
the unknown function at a certain time are given in terms of the values of the function at previous times.
One of the hindrances encountered by these scholars in the use of interpolation techniques to evaluate 
the delay term of DDEs was studied by Majid et al.[7] that the computational method use in solving 
DDEs should be at least the same with the order of the interpolating polynomials which is very hard to 
achieve; otherwise, the accuracy of the method will not be preserved. Therefore, it is required that in the 
evaluation of the delay term, using an accurate and efficient formula should be considered.
To overcome the hindrance posed using interpolation techniques in checking the delay term, we shall 
apply the valid expression of the sequence formulated by Sirisena and Yakubu[8] and incorporate it into 
the first-order DDEs before its numerical evaluation. This approach has been successfully applied by Osu 
et al., Chibuisi et al.[9-11] in finding the numerical solution of first-order DDEs without the application of 
the interpolation techniques in evaluating the delay term.
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In this paper, we shall formulate and apply 
extrapolated block Adams Moulton methods in 
solving some first-order DDEs as developed by 
Ballen and Zennaro.[12]

� � �y t f t y t y t( ) ( , ( ), ( )),�  for t?t0, τ>0

y(t)=m(t), for t≤t0 (1)
Where, m(t) is the initial function, τ is called the 
delay, (t–τ) is called the delay argument, and y 
(t–τ) is the solution of the delay term. The results 
obtained after the application of the proposed 
method shall be compared to other existing 
methods studied by Sirisena and Yakubu, Osu 
et al.[8,9,13] to prove its advantage.

DEVELOPMENT OF LINEAR 
MULTISTEP COLLOCATION 
PROCEDURE

The k-step linear multistep collocation procedure 
with m collocation points was derived in Ballen 
and Zennar[12] as; 
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From Equation (2), the continuous expression of 
extended block Adams Moulton methods can be 
expressed as
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Where, αa(x), βa(x) and γa(x) are continuous 
coefficients of the technique defined as
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Where, a = {0, 1…,w–1} are the w collocation 
points, xz+a, a = 0, 1…,e–1 are the e arbitrarily 
chosen interpolation points, and b is the constant 
step size.
To get αa(x), βa(x) and γa(x),[13] formulated a matrix 
equation of the form
EH=I (7)
Where, I is the square matrix of dimension 
(e+w)×(e+w) while E and H are matrices defined as
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From the matrix Equation (7), the columns of 
E=H–1 give the continuous coefficients of the 
continuous scheme of Equation (3).

DEVELOPMENT OF EBAMM 
INCORPORATING ONE EXTENDED 
FUTURE POINT FOR K=2

Here, we incorporate one extended future point at 
x=xz+3 as a collocation point, thus the interpolation 
point, e=1 and the collocation points w=4 are 
considered. Therefore, Equation (3) becomes
y(x)=α1(x)yz+1+b[β0(x)fz+β1(x)fz+1+β2(x)fz+2+y3(x)gz+3 
 (10)
The matrix H in Equation (9) becomes
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The inverse of the matrix E=H–1 is examined 
using Maple 18 from which the continuous 
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scheme is obtained using Equation (3), 
evaluating and simplifying it at x=xz, x=xz+2 
and x=xz+3, the following discrete schemes are 
obtained
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DEVELOPMENT OF EBAMM 
INCORPORATING ONE EXTENDED 
FUTURE POINT FOR K = 3

Here, we incorporate one extrapolated future 
point at x=xz+4 as a collocation point, thus the 
interpolation point, e=1 and the collocation points 
w=5 are considered. Therefore, Equation (3) 
becomes
y(x)=α2(x)yz+2+d[β0(x)fz+β1(x)fz+1+β2(x)fz+2+β3(x)
fz+3+y4(x)gz+4 (13)
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The inverse of the matrix E=H–1 is examined 
using Maple 18 from which the continuous 
scheme is obtained using Equation (3), 
evaluating and simplifying it at x=xz, x=xz+3 
and x=xz+4, the following discrete schemes are 
obtained
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DEVELOPMENT OF EBAMM 
INCORPORATING ONE EXTENDED 
FUTURE POINT FOR K = 4

Here, we incorporate one extrapolated future 
point at x=xz+5 as a collocation point, thus the 
interpolation point, e=1 and the collocation points 
w=6 are considered. Therefore, Equation (3) 
becomes
y(x)=α3(x)yz+3+b[β0(x)fz+β1(x)fz+1+β2(x)fz+2+β3(x)
fz+3+β4(x)fz+4+y5(x)gz+5 (16)
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The inverse of the matrix E=H–1 is examined 
using Maple 18 from which the continuous 
scheme is obtained using Equation (3), 
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evaluating and simplifying it at x=xz, x=xz+1, xz+2, 
xz+4 and x=xz+5, the following discrete schemes 
are obtained
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CONVERGENCE ANALYSIS

Here, the investigations of order, error constant, 
consistency, zero stability, and region of the 
absolute stability of Equations (12), (15), and (18) 
are worked-out.

ORDER AND ERROR CONSTANT

The order and error constants for Equation (12) 
are obtained as follows
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Applying the same approach to Equation (18), we 
obtained
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CONSISTENCY

Since the schemes in Equations (12), (15), and 
(18) satisfy the condition for consistency of order
a ≥1, then they are consistent.

Stability analysis

The zero stability for Equation (12) is evaluated 
as follows
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Using Maple 18 software, we obtain

G v v v( ) � �4 3 � � �4 3 0v v

� � � � � �1 2 3 41 0 0 0v v v v, , , . Since |vi|<1, 

i=1,2,3,4, Equation (15) is zero stable.

Following the same procedure for Equation 
(18)
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Using Maple 18 software, we obtain

G v v v( ) � � �5 4 � � � �5 4 0v v

� � � � � � �1 2 3 4 51 0 0 0 0v v v v v, , , , . Since |vi|<1, 

i=1,2,3,4,5, Equation (18) is zero stable.

CONVERGENCE

Since Equations (12), (15), and (18) are both 
consistent and zero stable, therefore, they are 
convergent.

REGION OF ABSOLUTE STABILITY

The regions of absolute stability of the numerical 
methods for DDEs are considered. We considered 
finding the P- and Q-stability by applying 
Equations (12), (15), and (18) to the DDEs of this 
form

y t uy y t
y t m t

' ( ) ( ),

( ) ( ),

� �
�

(t) + c � t t
t t
�
�

0

0
 (22)
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Where, m(t) is the initial function, w, z are complex 
coefficients, τ=zb, z� � , b is the step size, and

z
b
z�

� ,  is a positive integer. Let P1=bu and 

P2=bc, then
Making use of Maple 18 and MATLAB, the 
region of P- and Q-stability for Equations 
(12), (15), and (18) are plotted and shown in 
Figures 1-6.
The P -stability regions in Figures 1-3 lie inside 
the open-ended region while the Q-stability 
regions in Figures 4-6 lie inside the enclosed 
region as shown below.

IMPLEMENTATION OF NUMERICAL 
PROBLEMS

In this section, some first-order DDEs shall be 
solved using Equations (12), (15), and (18) of the 
discrete schemes that have been established. The 
delay argument shall be evaluated using the idea 
of sequence formulated by Sirisena and Yakubu.[8]

Problem 1

y t y t y t' ( (ln( ))),( ) ( )� � � � �1000 1000 1  0≤t≤3

Figure 6: Region of Q-stability (EBAMM) in Equation (18)

Figure 5: Region of Q-stability (EBAMM) in Equation (15)
Figure 2: Region of P-stability (EBAMM) in Equation (15)

Figure 1: Region of P-stability (EBAMM) in Equation (12)

Figure 3: Region of P-stability (EBAMM) in Equation (18)

Figure 4: Region of Q-stability (EBAMM) in Equation (12)
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y(t)=e–t, t≤0
Exact solution y(t)=e–t in[8]

Problem 2

y t y t e ey t' ( ) ( ),( ) ( )� � � � �� � �1000 997 9973 31 1000

0≤t≤3

y(t)=1+e–3t, t≤0
Exact solution y(t)=1+e–3t in[8]

ANALYSIS AND COMPARISON OF 
RESULTS

Here, the solutions of the schemes derived in 
Equations (12), (15), and (18), shall be investigated 

in solving the two problems above by estimating 
their absolute errors.
The analysis of results is obtained by determining 
absolute differences of the exact solutions and the 
numerical solutions.[14] The results obtained after 
the application of the proposed method shall be 
compared to other existing methods studied by 
Osu et al., Chibuisi et al., Onumanyi et al.[9,10,13] 
to prove its superiority. The notations used in the 
table are stated below
EABMM = Extrapolated Block Adams Moulton 
Methods for step numbers k=2,3, and 4.
RBBDFM = Reformulated Block Backward 
Differentiation Formulae Methods for step 
numbers k=3 and 4 in Sirisena and Yakubu.[8]

TDBBDFM = Third derivative block backward 
differentiation formulae method for step numbers 
k=2,3, and 4 in Osu et al.[9]

CBBDFM = Conventional Block Backward 
Differentiation Formulae Method for step numbers 
k=2 and 3 in Onumanyi et al.[13]

MAXE = Maximum Error.

CONCLUSION

The discrete schemes of Equations (12), (15), 
and (18) were deduced from their different 
continuous formulations and were examined to 
be convergent, P- and Q-stable. Furthermore, 
it was observed in Tables 1 and 2 that the 
EBAMM for k=4 scheme performed better than 
the EBAMM schemes for step numbers k=3 and 
k=2 when compared with other existing methods. 
It is recommended that the EBAMM schemes 
of higher step numbers perform better than the 
EBAMM schemes of lower step numbers and 
also the step numbers of k=2,3 and k=4 are 
suitable for solving DDEs. Further studies should 
be carried out for step numbers k=5,6,7,… on the 
construction of discrete schemes of EBAMM 
for numerical solutions of DDEs without the 
introduction of interpolation techniques in 
evaluating the delay term.
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