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ABSTRACT

In this paper, we present review of integration in Banach spaces by means of definitions and theorems
with special concentration on the Bochner integral. Brief touch was made on the generalized derivatives
and generalized gradients (sub-differentials), and in the concluding part of this paper, we developed

finite extensions of the Bochner integrals for sums and products as main results.
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INTRODUCTION

In this paper, we present some important definitions
and properties of spaces compromising functions
on areal interval [0,7] into a Banach space X. Such
spaces and their properties are of vital importance
for studying parabolic differential equations,
modeling problems of plasticity, sandpile growth,
superconductivity, and option pricing.

Integration in Banach Spaces

Definition 1.1.1:" Let (Q, %, u) be a finite
measure space and X a Banach space, u: Q—X
is called strongly measurable if there exists a
sequence {u } of simple functions such that ||un
(w)—u (w) x| —( for almost all u as n—a.

Definition 1.1.2 (Bochner Integral):?' Let
(Q, g, u) be a finite measure space and X a Banach
space. Then, we define the Bochner integral of
simple function u: Q—X by

Iudu = zn:cl.,u(EmEl)

E i=1

for any E e, where ¢s are fixed scales.
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The Bochner integral of a strongly measurable
function u: Q—X is the strong limit (if it exists)
of the Bochner integral of an approximating
sequence {u } of simple functions. That is,

Judu = J-undu.
E E
Remark 1.1.1

a. The Bochner integral is independent of the
approximating sequence

b. If u is strongly measurable, u is Bochner
integrable if and only if || u (x) || is integrable

Definition 1.1.3:8! L (0,7 X), 1 <p < a consists
of all strongly measurable function f: [0,7]—X for
which

[Ir @, de <

Theorem 1.1.1:¥ C” ([0,7], X) consisting of
all continuous function fi [0,7]—X that have
continuous derivatives up to order m on [0,7] is a
Banach space with the norm

£ (t)H

m
=305
- 0<t<T
k=0 X
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Theorem 1.1.2:5! L, (0,15 X) is a Banach space
with the norm

([t

b

Let X be a Hilbert space, then L (0,7; X) is a
Hilbert space with respect to inner product

T
f>gL2 (O’T;X):If’ngt
0

Remark 1.1.2.

a. InL (0,7; X), two functions are identically
equal if they are equal except on a set of zero

b. L (0,T; X) denotes the space of all measurable
function which are essentially bounded. It is
Banach space with the norm

GESSTG N

c. If the embedding x —y is continuous, then
the embedding

L(0,T:X)cL,(0,T;Y), 1l<g<p<eo

Is also continuous.

d. Let X* be a dual space of a Banach space X,
then (Lp (0,T; X))* the dual of L (0,7 X) can
be identified with Lp (0,T; X*) that is, we can
write

*

(L,(0.7:x)) =L,(0.T:X7)

Definition 1.1.4 (Generalized Derivative)'®!

LetfeL, (O,T; X) and g € L (0,7, X) where X and
Y are Banach spaces. The function is called the
generalized derivatives of the function fon (0,7) if

T () £ (= (1Y T (g e

0

VoeCy(0,7)

we write g=f".
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Remark 1.1.3

a) (Uniqueness of generalized derivative). The
n-th generalized derivative is unique. That is,
if h is another n-th generalized derivatives,
then A=g almost everywhere on (0,7) that is
h=gin L (0,T; X)

b) (Relationship between generalized derivatives
and distributions). Let /€ L (0,7; X), then
a distribution F' is associated with f by the
relation

T

F(p)= J.(p(t)f(t)dt VoeCy(0,T)

0

For each n, this distribution has an nth derivative
F" defined by

F.p=(-1)"F,0" YoeC;(0,T)
If (1.1) holds, then F can be represented by

VoeCy(0,T)

As we know, the advantage of the distribution
concept is that each function f € L (0,7 X)
possesses derivatives of every order in the
distributional sense. The generalized derivative
(Definition 1.1.4) singles out the cases in which
by the nth distributional derivatives of f can be

represented by a function g € L, (0,7; X). In this
case, we set ) = g and write briefly

feL(0,T;x), /" eL(0,T;Y)

Theorem 1.1.3 (Generalized Derivative and
Weak Convergence)!”!

Let Xand Ybe Banach spaces and let the embedding
X CY be continuous

Then it follows from f" =g, on (0,T) Vk, f
fixedn>1andf,—fin L (0,T; X) as k—a., g—g
inL (0,7 X) as k—o, 1 <pg<oa that /) = g on
(0,7).
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Theorem 1.1.4/"

For a Banach space X, let H™? (0,7; X) denote the
space of all functions such that /™ € L, (0,7; X),
when n<m and f™ denote the nth generalized

derivative of f. Then H™? (0,7, X) is a Banach
space with the norm

= S0,

If X is a Hilbert space and p = 2, then H™ (0,T; X)
is a Hilbert space with the inner product

[l

H(0.T:X Jf(O) =/

T
f’gH"‘"’(O,T;X) = J.fl’g:(dt
0

Remark 1.1.4

a. The proof of theorem (1.1.4) is similar to that
of theorem which states that ™ (€2) is Hilbert
space with respect to the inner product

F,G= Y. DF,DGL,(Q)

|o|<m

More generally, if H"* (Q2) denotes the space of all
functions f'€ L (€2) such that D*F € L, I<P<a,
|a| < m then the space is a Banach space.

b. Forx<y

7 )- 1 @), <[ 0)]

X

holds.
c. The embedding H'2(0,7;X)c C([O,T],H)

where H is a Hilbert space, is continuous, that
1S, there exists a constant £>0such that

”f”c([o,T],H) S”f”H"Z(O,T;H)

GENERAL GRADIENT
(SUB-DIFFERENTIAL)

Definition 2.1 (Lipschitz Continuity)!”!

Let QC X,T an operator from X into Y. We say
that 7" is Lipschitz (with modulus a >0) on Q, if
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HT(xl)—T(xz)HS ax, —x,| for all x,x, cQ. T'is
called Lipschitz near x (with modulus «) if, for
some >0, T'is Lipschitz with modulus on S (x). If
T is Lipschitz near x € Q, we say that 7 is locally
Lipschitz on Q. a is called the Lipschitz exponent.

Definition 2.2 (Monotone Operators)!”!

Let 7: X—X* this is called monotone if <T T u-
J’>>0 for all u,v € X Note: ( ) denoted the duahty

between X and X*, that is, also the value <7 T u—
J’>. In Hilbert space setting ( ) becomes the inner

product. 7' is called strictly monotone if <7
T u=V>>0 forall u, u,v € X.

T'is called strongly monotone if there is a constant
k>0 such that <7’ T u=V>>k || u-v || 2 for all u,v
eX.

Definition 2.3/

Let T: H-2H* be a multi-valued operator into
H*. The operator T is said to be monotone if (-7,
u—v)>0 for all u,v € H and for all ¢ € T (1) and
n € T. A monotone operator 7 is called maximal
monotone if it is monotone

Proof: If 9F (x) or 0F () is empty, then clearly
<8F(x)—8F(y),x—y> >0

Is satisfied. If this is not the case, choose

F, €0F (x) and F, €0F (y) .
then
<E,x—y> ZF(x)—F(y) VyeH oy
(Fpy=x)2F(y)=F(x)
by changing sign in (1.2.1) we get
(F = Fx=y)20

Hence, U ofF ( x) 1S a monotone operator

MAIN RESULT
Theorem 3.1

Given (Q, £, u) a finite measure such that

Iud,u = Zn:c“u(EﬂEl)

E
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Exist then for all j satisfying 1 <j < m <a, the
following holds

i. The sum Zjudu =jzlci,u(EmEl.)
i E i=

ii. The product
H(Zlud“j = (gci,u(EmEi)Jj

Proof
l. By induction: If

2
j=1Y Judu=23cu(ENE) which is the
1 E i=1

celebrated Bochner integral. If j=2,

ijud,u = 2icl.,u(EmEi)
i=1

=l g

Assume it is true for n=k we now prove it is true
for n=k+1. Hence

Zjudu = Zjud,u+judu

k+1 g k

:kzn:ci,u(EmEi)+2c“u(EmEi)

i=1 i=1
= (k+1) Y cu(ENE)

i=1

Therefore, since this is true for n=k+1, hence it is
true for n=k and then the proof that

qudu = chl.,u(EmEi)
J E i=1

2. For j=1, the claim is obviously true and for
n=2

;}[ud,u = U(i".udﬂj = (gcnu(EmEi))z

i=l g

Assume it is true for n=k, then, we now prove it is
true for n=k+1 such that
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(gj.ud,ujz(gciu(EmEi)j

i=l g

_ (ic,.u(EmE[)Jk(icf“(EmE")j

i=1 i=1

-(Sentenr)|

i=1

Since it holds for n=k+1, hence, it holds for n=k.
Therefore

[ijudu} = (gciy(EmEi)jj

i=l g

A good example of this main result can be seen in
the example on integration by part stated below.

Example 3.1:

Letf(x)=|x9fiRﬁR

of (x)={sgnx}if x#0, sgnx:%, x#0
X

o (x)=[-11] ifx=0

More examples on generalized gradient can be
generated using the ones on Quatrata, Krevara,
Zowe and Rockafella and Wets.
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