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ABSTRACT
Time series data often entail counts. Time series count data, which refer to the number of times an item 
or an event occurs within a fixed period of time, are essential in many fields most of the works on time 
series count data do not exhaustively consider the effect excess zeros in modeling. This study, therefore, 
seeks to examine the performance integer-valued autoregressive (INAR) and Poisson autoregressive 
models on count data under the influence of excess zeros. The effect of sample sizes, n =30, 60,…, 
300, on the performance of the models were also studied. At every sample size, the best status of the 
orders p and q where p, q = 1, 2 are, respectively, determined for the levels of the excess zeros through 
simulations. The predictive ability of the models was observed at h-steps ahead, h = 5, 10, 15,…, 50 for 
the models with excess zeros data structures. It was concluded that the best model to fit and forecast data 
with excess zeros is INAR at different sample sizes. The predictive abilities of the four fitted models 
increased as sample size and number of steps ahead were increased
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INTRODUCTION

Time series is the values of some statistical 
variables measured over a uniform set of time 
points. Examples of time series data are monthly 
sales in a store, monthly HIV/AIDS cases 
recorded in a hospital, yearly production by a 
company, daily number of eggs laid by fowls in 
a farm, consumption of electricity in kilowatts, 
and data on population motor registration per 
day. Time series data often entail counts, such 
as the number of road accidents, the number of 
patients in a certain hospital, and the number of 
customers waiting for service at a certain time. 
Count data can be found in many practical lifetime 
studies, such as the number of days before death 
in certain diseases or the number of cycles (runs) 
until a machine stops working and so on. Hence, 
a number of statistical distributions have been 
applied to model the case of a count random 

variable (RV) with a non-negative integer value. 
A good overview of these distributions can be 
found in Johnson et al. (2005).[9]

Research in economics, ecology, environmental 
sciences, medical, and public health-related fields, 
it is often practical that the pattern of outcomes is 
relatively infrequent behaviors. Data of this type 
consist of excess zeros. It has been reported that 
the traditional Poisson model provided the popular 
frame work for fitting count data but not suitable 
for time series data with excess zeros and further 
considered using integer-valued autoregressive 
(INAR) (1) model with restricted application 
to zeros and ones data (Qi et al., 2019).[21] Data 
with many zeros are usually frequent in research 
studies when counting the occurrence of certain 
behavioral events, such as number of purchases 
made, number of school absences, number of 
cigarettes smoked, or number of hospitalizations. 
These types of data are called count data and 
their values are usually non-negative with a lower 
bound of zero. Common issues when dealing with 
count data are typically zero inflation or excessive 
zeros (Akeyede et al., 2021).[1]
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Indeed, there already exists a number of literatures, 
for instance, the work of Yusuf et al., 2018, compares 
the performance of hurdle Poisson, hurdle negative 
binomial, and zero negative inflated binomial 
(ZINB) on 2013 health survey data set, where he 
recommended that ZINB model outperformed 
others on excess zeros count data.[24] Qian et al., 
2020, considered modeling of heavy tailed count 
time series data on number of traded stock in 5 min 
for interval Empire District Electric Company using 
heavy tailed probabilities, he further recommend the 
use of INAR of order p to analyze heavy tailed count 
time series data.[17] In the work of Hinde et al., 2001, 
the author uses Poisson regression and negative 
binomial regression models as standard methods for 
modeling count outcomes but the common problems 
associated with overdispersion and excess zeros 
were not accounted for in the work.[7] Siti and Jamil, 
2017, used Poisson regression on data with excess 
zeros and discovered a presence of over-dispersion 
in analyzing zero values and finally recommended 
zero-inflated Poisson to be a better model for such 
type of data.[20]

To account for the excessive proportion of zeros, either 
the hurdle or zero-inflated model is used. Mullahy 
(1986) studied the hurdle model for univariate count 
data.[16] An extension for longitudinal or clustered 
count data with excessive zeros was considered 
by Min and Agresti (2005). A separate strand of 
literature is devoted to zero-inflated model. Lambert 
(1992) and Greene (1994) studied zero inflation 
for cross-sectional count data, and the multilevel 
extension was the focus of Lee et al. (2006). Min 
and Agresti (2005) and Lee et al. (2006) introduced 
two separate and possibly correlated subject-specific 
random effects, one in the count and the other in the 
zero inflation part.[2,5,10,15]

In this study, the analysis of data with excess zeros 
of count data was carried out using INAR model 
and Poisson autoregressive (PAR) models. Further, 
model selection criteria were also considered to 
give a simple and effective way of selecting a 
model for the excess zeros of the count time series 
process.

METHODOLOGY[6,8,12,23]

Data set was simulated in R statistical software 
with sample sizes of 30, 60, 90,… and 300, from 
Poisson and negative binomial distribution to 
produce generated series count data with Poisson 

excess zero and negative binomial excess zero, 
respectively. The two models under study, namely, 
INAR and PAR were fitted to the simulated data so 
as to examine the effect of the proportion of excess 
zero on their performance. Levels excess zero were 
imposed at different percent on the simulated data 
for observation yi in different data set generated, 
which were randomized and replicated 1000 times 
each for the respective selected sample sizes.
In simulation, we set our parameters to be 
∅1=1∅2=1 to ensure discrete nature of count data 
generated. The response Yti in (1) was generated 
from Poisson and negative binomial distributions. 
The two models under study were considered 
to analyze how well each of the model fits the 
selected data sets having some degree of excess 
zeros. To compare the forecasting accuracy of the 
model, a multicriterion performance evaluation 
procedure earlier mentioned will be used in this 
study. The model with the minimum criteria 
shall be considered as the best for the fitting and 
forecasting. Note that a number of steps ahead 
will be forecasted from each model.
Data were generated from linear second orders of 
autoregressive functions given as follows:
      Model 1. AR (2): Yti=0.2Yti–1+0.4Yti–2+et (1)
t=30, 60, 90, 120, 150, 180, 210, 240, 270, 
300. i = 1, 2,…,1000
Where, Yti will be simulated from Poisson and 
negative binomial families for equidispersed 
excess zeros, respectively, as follows:
The basic count model is the Poisson regression 
model which is based on the Poisson distribution 
with probability density function
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Thus, for the Poisson models E(yi)=V(yi)=μi. The 
restrictive condition that the mean must equal the 
variance is often violated by excess zeros data 
(where variance may exceeds the mean).Since 
excess zero count data often violates the equality 
of mean and variance feature, Poisson model 
is generally considered inappropriate for count 
data, because count data contains excess zeros 
and are usually highly skewed and overdispersed 
(Cameron and Trivedi, 2008).[4]

The over-dispersion is achieved from the negative 
binomial distribution function given as follows;
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Here, the dispersion parameter αi>0, λi=E(Yi); and 
V(Yi)=λi+αi λi

2

The negative binomial model can be used to 
impose the over-dispersion problem on by 
creating larger values of variances than means. 
Lawal (2011) argued that the negative binomial 
(NB) model might be a suitable alternative to the 
Poisson model, especially for excess zeros which 
lead to overdispersion in count data.[11] This is 
because the NB model in this case would account 
for the heterogeneity in the data by introducing 
the dispersion parameter α. To compare the 
modeling and forecasting accuracy of the models, 
AIC and BIC criteria for performance evaluation 
procedure were used in this study. The model with 
the minimum criteria values was considered as 
the best for the fitting and forecasting. Note that a 
number of steps ahead were forecasted from each 
model.

Zero inflated Poisson (ZIP) model

The ZIP regression model was introduced by 
Lambert (1992) for analyzing manufacturing 
data and investigating the number of defects in 
equipment.[10] Poisson models are mixed with 
zeros to allow for the excessive zeros in the data, 
which is commonly encountered in real life. The 
ZIP can be derived as follows:
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The parameter µ (>0) is the mean (and also the 
variance) of Poisson distribution. Then, for a 
sample yi, i = 1, 2,…, n, and within the framework 
of generalized linear model, this distribution is 
generalized by allowing to be related to a set of 
covariates xi = (xi1, xi2, …xip) with corresponding 
parameters α,through the log link function, such 

that;
μi=e–x’iα 2.1
This was chosen to ensure that μi remains positive 
in order that its predicted values will always be 
positive. Thus, the response variable y represents 
the frequencies of an event of interest. The x and 
z are the set of covariates with α coefficients, 
respectively.
Although the common practice in analyzing count 
data in many disciplines as widely considered 
is Poisson model being the most basic model, 
regrettably, the model reliance on a single 
parameter often limits its use on real data. This is 
due to the fact that, most data violated feature of 
Poisson distribution, which is sameness of mean 
and variance, known as equidispersed.[7] Van den 
Broek (1995) was first to proposed a score test 
so as to test whether the ZIP distribution should 
be used as an alternative to the ordinary Poisson 
distribution, the work was later extended to the 
setting where count data are correlated.[22] Despite 
the popularity of the ZIP models, the literature for 
time series count data with excess zeros is sparse.

Zero-inflated negative binomial (ZINB) model

ZINB models have been described as an extended 
version of the negative binomial models for excess 
zero count data[5] The ZINB model can be derived. 
Thus,
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with probability ρt and κ as overall dispersion 
parameter.
The ZINB autoregression can be used to account 
for simultaneous excess zero and over-dispersion 
in many count time series data.

INAR model

In this work, we are interested in a special class 
models, the so-called INAR process introduced by 
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(McKenzie, 1985; Al-Osh and Alzaid, 1987).[2,14] 
The theoretical properties and practical applications 
of INAR and related processes have been discussed 
extensively in the literature. Silva et al. (2005) 
considered independent replications of count time 
series modeled by INAR (1) and proposed several 
estimation methods using the classical and Bayesian 
approaches in time and frequency domains.[18]

Point prediction for INAR (1) process
Suppose a non-negative integer-valued RV X 
and λ ∈ [0, 1], the generalized thinning operation 
which is denoted by “◦”is given by;

   1

    
=

= ∑
X

j
j

X Y
 

(6)

Where, {Yj}, j =1,…, X, is a sequence of 
independent and identically distributed non-
negative integer-valued random variables, 
independent of X, with finite mean λ and variance 
σ2. The sequence is known as the counting series 
of λ  ◦ X. When  {Yj} is a sequence of Bernoulli 
random variables, the thinning operation is called 
binomial thinning operation and was defined by 
Steutel and van Harn, 1979.[19] The well-known 
INAR(1) process {Xt; t = 0, ±1, ±2,…} is defined 
on the discrete support No by the equation
   Xt = λ ◦ Xt–1+εt (7)
Where, 0 < λ < 1, {εt} is a sequence of independent 
and identically distributed integer-valued random 
variables, with E[εt] = µε and Var[εt] = σε

2.

Poisson autoregressive (PAR) model

The PAR (p) model can be defined as

               
!

−
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Where, st is the conditional mean of the linear 
autoregressive AR process with E(qt⁄Qt–1) in (15).
This represents the measurement equation for the 
observed data
The one step ahead for the conditional PAR (p) 
model forecast is given by
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Where, ρ, δ, st, and σt are the optimized values of a 
PAR series, the induced covariance Xt has the
μ=e(Xt

δ) (Brandt and Williams, 2001).[3]

PAR (p) forecast density for the one step ahead 
distribution
The PAR (p) forecast density is given by

 P(qt⁄(Qt–1)=∫∅ Pr (qt⁄∅t)Pr(∅t⁄Qt–1)d∅) (11)
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This is a negative binomial distribution function 
with a gamma function Γ(∙).
The forecast function for the conditional mean 
and variance of a PAR (p) series realizations is 
based on the optimized values of ρ, δ, st, and σt. 
The log-likelihood function for the PAR (p) model 
is given as

1, 1 1 1
1
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Using the linear autoregressive equation
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Where, ρi and λ are any real number values.
We can obtain AR (1) for qt which yield PAR 
(1) model with a negative binomial predictive 
distribution, for order p can also be generated 
as well. There is no restriction for the linear AR 
process with respect to the density P(qt⁄Qt–1). The 
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qt density choice resulted constraints to ρi and λ to 
require admissible values.

Theil’s U statistics

Theil’s U statistics is the relative accuracy 
measure that compares forecasted results with the 
results of forecasting with minimal historical data 
it also requires the deviations to give more weight 
to large errors and to exaggerate errors, which can 
help eliminate methods with large errors.[13] U>1 
indicates that the forecasting technique is better 
than guessing, U = 1 indicates that the forecasting 
technique is as good as guessing, U<1 indicates 
that the forecasting technique is worse than 
guessing. Theil’s U-statistic: The U-statistic 
developed by Theil (1966) is an accuracy measure 
that emphasizes the importance of large errors (as 
in MSE) as well as providing a relative basis for 
comparison with naïve forecasting methods.[21] 
Makridakis et al. (1998) have simplified Theil’s 
equation to the form
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DATA ANALYSIS AND RESULTS

The results of the analyses of simulated data 
from different levels of excess zeros and sample 
size through the Poisson and negative binomial 
distributions are presented in Tables 1-5. The 
tables revealed the relative performance of INAR 
and PAR models of different orders.
The fitted models’ AIC values as reported in Table 1 
show that INAR (4) has exhibited a linear pattern 
of performance across sample sizes and seem the 
best fitted followed by INAR (3). PAR (3) fitted 
best at low sample sizes below 90, overtaken by 
PAR (1) with sharp fall at sample sizes above 120, 
then PAR (4) above 120 with minimum values of 
AIC, as shown in [Figures 1a,1b,2a,3a and 4a].
The fitted models’ BIC values as reported in 
Table 2 show that INAR (4) has exhibited a linear 
pattern of performance across sample sizes and 
seem to be the best fitted followed by INAR (3). 
PAR (4) fitted best at sample sizes below 270, 
overtaken by PAR (1) as sample sizes approach 
300 with minimum values of BIC, as plotted in 
Figure 2b.
The average values of AIC of each model at 
various sample sizes when there are excess zeros 
are presented in Table 3. The best fitted among 
INAR models is INAR (4). Relatively, PAR (3) 
displays good trend pattern below sample sizes of 

Table 1: AIC of models’ performance for negative binomial excess zeros
Sample sizes 30 60 90 120 150 180 210 240 270 300
Models

INAR (1) 110.963 172.337 218.014 253.497 281.400 303.262 320.100 332.638 341.417 346.855

INAR (2) 110.912 172.236 217.862 253.294 281.147 302.958 319.746 332.234 340.961 346.349

INAR (3) 110.801 172.013 217.528 252.849 280.590 302.290 318.967 331.343 339.960 345.236

INAR (4) 110.79 171.991 217.495 252.805 280.535 302.224 318.890 331.255 339.860 345.125

PAR (1) 53.383 147.743 186.573 16.483 325.911 422.383 510.818 563.182 645.428 684.645

PAR (2) 48.914 144.209 188.815 253.065 320.519 420.304 511.761 565.215 647.099 719.556

PAR (3) 48.325 142.280 188.623 253.362 320.535 420.289 508.944 563.643 644.759 715.474

PAR (4) 48.643 142.978 186.573 252.368 320.206 418.23 500.949 555.913 644.181 614.034

Table 2: BIC of models’ performance for negative binomial excess zeros
Sample sizes 30 60 90 120 150 180 210 240 270 300
Models

INAR (1) 116.568 180.715 228.013 264.647 293.442 316.033 333.489 346.561 355.811 361.670

INAR (2) 116.517 180.613 227.861 264.444 293.189 315.730 333.134 346.156 355.355 361.164

INAR (3) 116.406 180.391 227.528 263.999 292.633 315.062 332.355 345.266 354.353 360.051

INAR (4) 116.395 180.369 227.494 263.955 292.577 314.996 332.278 345.177 354.254 359.941

PAR (1) 58.987 156.121 196.572 257.633 337.954 435.155 524.207 577.104 659.822 699.46

PAR (2) 54.519 152.586 198.815 264.215 332.561 433.076 525.149 579.137 661.493 734.371

PAR (3) 53.93 151.157 195.622 262.512 332.578 433.061 522.332 577.566 659.153 730.289

PAR (4) 54.248 151.355 196.572 263.518 332.249 431.002 514.337 569.836 658.575 729.649
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Figure 1: (a) AIC of the fitted INAR (p) models with 
negative binomial excess zeros. (b) AIC of the fitted PAR 
(p) models with negative binomial excess zeros

a

b

Figure 2: (a) BIC of the fitted INAR (p) models with 
negative binomial excess zeros. (b) BIC of the fitted PAR 
(p) models with negative binomial excess zeros

a

b

Table 4: BIC of models’ performance for Poisson excess zeros
Sample sizes 30 60 90 120 150 180 210 240 270 300
Models

INAR (1) –4.678 1.883 1.299 29.825 40.121 38.279 43.902 39.200 37.536 29.912

INAR (2) –5.244 0.579 –7.249 9.932 18.733 16.515 15.457 11.097 6.870 –4.076

INAR (3) –5.585 0.271 –7.558 9.891 18.364 16.147 15.238 10.285 4.507 –6.856

INAR (4) –6.175 –0.274 –7.569 8.569 17.351 14.005 13.497 8.663 4.319 –7.052

PAR(1) 17.134 57.196 98.699 109.892 133.192 162.775 188.376 206.781 219.809 220.463

PAR(2) 17.139 71.457 69.637 93.297 121.683 145.551 159.98 179.695 195.598 208.681

PAR(3) 17.130 53.397 61.983 82.596 118.151 142.924 182.484 198.457 214.367 215.848

PAR(4) 17.135 44.7 66.55 85.961 143.109 170.732 177.892 191.463 228.724 214.004

Table 3: AIC of models’ performance for Poisson excess zeros
Sample sizes 30 60 90 120 150 180 210 240 270 300
Models

INAR (1) –10.283 –6.495 –8.7 18.675 28.079 25.507 30.514 25.277 23.143 15.096

INAR (2) –10.848 –7.799 –17.248 –1.218 6.69 3.743 2.069 –2.826 –7.524 –18.891

INAR (3) –11.189 –8.107 –17.557 –1.259 6.322 3.375 1.850 –3.638 –9.887 –21.671

INAR (4) –11.779 –8.652 –17.569 –2.581 5.308 1.233 0.109 –5.260 –10.075 –21.867

PAR (1) 11.529 48.819 88.699 98.742 121.149 150.003 174.987 192.859 205.416 205.648

PAR (2) 11.534 63.08 59.638 82.147 109.641 132.779 146.591 165.773 181.205 193.866

PAR (3) 11.525 35.02 51.984 72.446 106.109 130.152 169.095 184.534 199.974 201.032

PAR (4) 11.530 36.323 56.551 74.811 131.067 157.96 164.504 177.54 214.33 199.189
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180, followed by PAR (2) in closed linear trend 
in Figure 3b based on the minimum reported AIC 
values.
The average values of BIC of each model at 
various sample sizes when there are excess zeros 
are presented in Table 4. The best fitted among 
INAR models is INAR (4) while in PAR models, 
PAR (4) performed well at low sample sizes 
below 60, PAR (3) displays good trend pattern 
below sample sizes of 210, followed by PAR (2) 
in closed linear trend at sample sizes above 210 
as shown in Figure 4b based on the minimum 
reported BIC values.
Based on the Theil’s analysis in Table 5, the ACP 
has the highest forecasting power due to their 
values greater than 1 and also greater than other 
values of the models across the steps ahead; this 
is followed by INAR and PAR. However, the 
Theil’s values of PAR, at higher steps ahead are 
close to zero, hence it is not as good as other 
models in forecasting. Indeed, the forecasting 
ability of all the models decreases as steps ahead 
increases.

CONCLUSION

This study discovered that the highest performing 
model in fitting and forecasting different count 
time series data with different levels of excess 
zeros was the INAR model based on all criteria 

Figure 3: (a) AIC of the fitted INAR (p) models with 
Poisson excess zeros. (b) AIC of the fitted PAR (p) models 
with Poisson excess zeros
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Figure 4: (a) BIC of the fitted INAR (p) models with 
Poisson excess zeros. (b) BIC of the fitted PAR (p) models 
with Poisson excess zeros
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Table 5: Forecast performance of the models with zero-
inflated negative binomial and zero-inflated Poisson using 
Theil’s U statistic
Steps 
ahead

Zero-inflated 
Poisson

Zero-inflated 
negative binomial

INAR PAR INAR PAR
5 2.0421 2.0031 2.4982 1.7847

10 2.0098 1.9542 2.3997 1.7262

15 1.9775 1.9184 2.3112 1.6677

20 1.9652 1.7915 2.2527 1.6092

25 1.9329 1.5646 2.1942 1.5507

30 1.9106 1.4337 2.1357 1.4922

35 1.8483 1.3908 2.0772 1.1136

40 1.816 1.3339 2.0187 0.9867

45 1.7837 1.3110 1.9602 0.7900

50 1.7514 1.1311 1.9017 0.6779
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of assessment. The model has the speedy fitting 
capabilities at both high and low sample sizes 
compare to. PAR models have the slowest fitting 
speed across sample sizes. Specifically, the INAR 
(4) has the highest performance followed by INAR 
(3) among all the models in fitting any time series 
count data with the underlying features reported 
in this study.

RECOMMENDATION

Based on the findings of this study, the following 
recommendations were made.
i. INAR (4) can also be used for time series 

count data when sample size is small
ii. PAR (4) can be used as alternative for count 

data with excess zeros at all sample sizes
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