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ABSTRACT
Mathematics surrounds us and has existed since ancient times. Numerals originated from performing 
daily tasks that required conceptual counting. Later, symbols began to appear and had to be memorized. 
Overtime, these formulas were simplified and transformed into notations. The collection of these 
symbols and notations became words, which gradually developed into a language. Indeed, mathematics 
can be used as a rational tool to link all kinds of knowledge. Throughout history, mathematics has been 
connected with all past human endeavors, and these achievements were composed to form different 
cultures. In addition, modern civilization only has one common type of mathematics – in terms of 
symbols – to depict the world’s natural phenomena. Therefore, mathematics is a common language 
for different nations and cultures. Taking a step further, this arguably implies that we have one creator, 
Christianity God – Jehovah.
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INTRODUCTION: ORIGIN OF 
SYMBOLS

The subject “mathematics” dates back to ancient 
times when people starts to count.[1-9] Mathematics has 
many symbols and notations, which are commonly 
used today. The question is, where did these symbols 
originate? According to Mazur (2014),[4] the word 
“mathematics” originated from the Greek word 
“token” or “token of identity.” It combines the root 
words: Sum (together) and the ballo (to throw) or 
precisely “to put together.” The ancient meaning 
is defined as, “a proof of one’s identity or one’s 
relationship to another.” When something is divided 
into two and is given to one another, these two pieces 
fit together perfectly and identify their relationship. 
At the same time, notations can come from shorthand 
or abbreviated terms. For example, the notation 
“+” is the shorthand Latin word for et. That said, 
others believe that symbols originated from objects 
surrounding people. Interestingly, ancient people used 
visual arts to memories the types of animals that they 
were able to hunt.[3] Gradually, these arts developed 
numerical ideas, which were then simplified and 

transformed into symbols or notations. Thus, this 
author proposes that mathematical symbols are 
related to conceptual numeral objects that can be 
presented as visual arts. They are then shortened to 
give suitable abbreviations whenever necessary. The 
following section will demonstrate how these ancient 
symbols or notations contributed to the development 
of modern mathematics.

LITERATURE REVIEW

One of the most famous ancient visual works of 
art is known as the Chauvet Cave paintings. It 
was discovered by three French speleologists in 
December 1994 (Piercy, 2013).[7] The paintings 
mainly consist of 13 species of animal, which 
were used by hunters to avoid danger and to find 
food. According to Merzbach and Boyer in 2011, 
the number, magnitude, and form of the paintings 
related to difference species, inequality in size, and 
unlikeness in appearance. Gradually, they found 
that there was a similarity in the counting of a 
wolf, sheep, and tree – the (conceptual) uniqueness 
(Piercy, 2013).[7] Finally, they attempted to use 
a symbol “|” – the numeral “one” – to represent 
this relationship, the only one real object, and 
the idea “one.” When the symbol is simplified 
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and abbreviated, it becomes the modern numeral 
notation “1.” Indeed, at the stage of representing 
numerals by symbol, there would have been many 
alternatives and options. This study will review 
the four most famous civilizations in the world: 
Egypt, Babylonia, India, and mainland China.

Counting Symbols among Historical 
Civilization Egypt

Egypt is well known for its contributions to geometry – 
the elementary congruence relation in the measuring 
device together with the beginning of a congruence 
theory and the idea of proof in geometry (Merzbach 
and Boyer, 2011) [Figure 1].[5] The problem was 
that Egypt had no clear-cut relationship between 
exact amounts and approximations in geometry – 
just like Babylonia. This issue will be discussed in 
a later section. These numerals were developed to 
solve problems such as “Heap,” “Geometric,” and 
“Slope” questions. The following image shows 
a numeral system that was used by the ancient 
Egyptians in Figure 2:
When discussing Egyptian numeration (Gullberg, 
1997),[9] one usually refers to hieroglyphics of 
some 5500 years ago. Hieroglyphics were used as a 
numerical grouping system where basic numbers can 
were added together to express complicate numbers.
First, in the hieroglyphics system, a vertical line 
means the number one; a heel bone is 10; a coiled 
rope is 100; a lotus blossom is 1000; a bent finger is 
10,000; a tadpole is 100,000; and a kneeling genie 
with raised arms is 1,000,000. There are also some 
rules for the added numbers. They are the following:
1. Each symbol is stepped one at a time and starts 

from 1 to 9 times;
2. The order of the symbols is not important, but 

they are likely to be of descending order either 
from left to right or from right to left;

3. It is a ten-based number system known as an 
additive decimal system.

Figure 3A shows the numeral representation in 
ancient Egypt.
The ancient Egyptians always used so-called 
unit fractions with number 1 as the numerator 
together with the symbol – an open mouth as the 
denominator (Gullberg, 1997).

Babylonia

The Babylonians are best known for their 
contribution to numeral approximation. They also 

developed sexagesimal fractions to find the square 
root of two from the approximation view (Merzbach 
and Boyer, 2011). In fact, they are superior to the 
ancient Egyptians in the sense that principle of 
position can be extended to cover both fractions 
and whole numbers. To be precise, they had the 
notation which has the same meaning for 2 (60) + 
2, 2 + 2 (60)−1, 2 (60)−1 + 2 (60)−2 two successive 
positions. That said, they also faced the same 
problem of distinguishing exact and approximation 
values (Merzbach and Boyer, 2011) [Figure 4].[5]

Plimpton 322 is a Babylonian clay tablet that 
shows how they developed an approximation 
method for finding the answers (approaching) 
to irrational numbers in calculating the area of a 
paddock. However, they may not have established 
the concept of number using the following: When 
a right-angled isosceles triangle with two sides 
is equal to one unit, the length of the hypotenuse 
is just the square root of 2. When continuing the 
process of adding a unit length as another side, 
one may even find the square root of numbers 
from 1 to 17 (Swetz, 1994).[2] This is because the 
idea of irrational number was not developed until 
around 300–400 B.C. by Theaetetus and Eudoxus. 
It may be suggested that the Babylonians were 
only one step away from discovering the concept 
of irrational number.
Another difference is that – unlike the Egyptians 
– the Babylonians were familiar with the Theorem 
of Thales, which was formulated more than a 
millennium earlier than Egypt. This is the only 
contribution of the Babylonians in pure geometry, 
as most of geometric theorems come from the 
applied arithmetic in the topic. In belief, the 
Babylonians had two systems of numeration: 
A sexagesimal system for astronomy together 
with a decimal system for daily usage.
There are further explanations about YBC 7289 
and Plimpton 322. YBC 7289 explains that as 
early as 1800–1600 B.C., the Babylonians knew 
the ratio of unit length sides to the diagonal of a 
square where the length is equal to the square root 
of 2. In fact, they used Archyta1’s Method (428–
365 B.C.) for the approximation (Merzbach and 
Boyer, 2011) [Figure 6];[5] Let “a” be the expected 
answer. Suppose there was an “a1” which is the 
first guess, then one may have the following steps:
Step 1: b1 = a/a1 (makes either one extremely big 
while the other is extremely small);
Step 2: a2 = 1/2 (a1 + b1) (calculates the arithmetic 
mean of them);
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Step 3: b2 = a/a2 (starts the process);
Step 4: Continuing the process and one may get 
an = (an−1 + bn−1)/2 and bn = a/an until the desired 
answer.
However, the Greek philosopher Pythagoras, 
who had lived around 600 B.C., established 
the famous Pythagoras Theorem. Tablet YBC 
7289 tells us that ancient Babylonians had a 
good approximation to square root of 2 to 1); 
23, 51, 10. With reference to the above finding, 
this author suggests that the Babylonians could 
list out a pretty ordered three sides of a right-
angled triangle. They may also know a lot about 
the relationships between these sides. However, 
they had difficulties in linking those applied 
arithmetic results to formulate the conclusively 
pure geometric Pythagorean’s Law. In other 
words, they were weak in transforming applied 
values into pure mathematical rules.

India

A major merit of India in numeral development 
is that the nation acted as a knowledge hub for 
exchanges between Eastern and Western culture. 
One case study is the number “zero” – the 
introduction of a notation for a missing position 
after one to nine symbols (Merzbach and Boyer, 
2011). Most believe that zero originated from 
Greece during the Alexandria period. It was then 
transmitted to India after the establishment of the 
decimal position system. When Indians started 
using the symbol “zero” – a round goes egg 
notation, one will achieve the modern system of 
numeration for integers.
The Hindu system is combined of three other 
ancient principles:
1. A decimal;
2. A positional notation;
3. Each of the 10 numerals is ciphered 

[Figure 7];[6]

However, none of the above principles originated 
from the Hindus. That said, once they had passed 
through India, the modern numeration system 
was founded. Indeed, there were various Indian 
tradition, these include computational techniques, 
astronomical and calendric concepts, and decimal 
place value numbers. There were also geometrical 
relations with Greek number systems and Roman 
Empire (plane trigonometry of chords, geocentric 
cosmological models, planetary eccentrics and 
epicycles, and astrological motivations, etc.) 

(Katz, 2007). Clearly, this is the most fitting case 
study for the successful exchange between Eastern 
and Western civilization.
Certainly, the origin of the number “zero” has 
been the subject of much debate:
1. The Greek letter omicron – the initial letter in 

the word “ouden” or “empty;”
2. The early zero symbols in Greek sexagesimal 

fractions were round rather than oval in shape;
3. In the 15th century, the Byzantine Empire 

used the zero sign, which is quite unlike an 
omicron. It was either an inverted form of 
the small letter “h” or appeared as only a dot 
(Merzbach and Boyer, 2011).

The symbol zero most likely originated from 
Greece (since this is the most possible evolution 
based on the available evidence) together with 
the three other ancient principles. The purpose 
of developing such a system was to determine a 
person’s position on Earth when being observed 
from the universe – a mathematical physics 
problem (Katz, 2007) [Figure 8].[6]

Mainland

There were numerous mathematical achievements 
in ancient mainland that are highly related to 
numeral developments. It is well known that one 
of the ancient mainland’s numeral symbols was in 
the form of a knot. This knot is very similar to 
those that were used in Peru. Indeed, the so-called 
knot numerals were finally transformed into an 
ancient mainlander magic square. It finally turned 
into the problem of solving ancient mainland’s 
simultaneous system of linear equations.
Mainland Magic Square [Figures 9-11][1,5]

The second of the most well-known numeral 
system in ancient China is the rod system. In this 
system, each number notation was represented 
by a certain number of rods. This eventually 
transformed into a calculation board, known as the 
Chinese abacus (suanpan) [Figures 12 and 13].[1,5]

The last contribution concerned in mathematical 
symbols from China was the tortoise plastron 
(Katz, 2007). This shows a record of mathematics 
in China as early as the Shang Dynasty (16th–
17th century, B.C.), in the form of inscriptions on 
tortoise shells and bones. This evidence tells us 
about China’s circular granaries, bronze weapons, 
and ceremonial vessels, which implies the existence 
of an exchange economy and currency. These 
constitutes to the Zhang Dynasty culture (human 
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endeavor or achievements) at that special moment 
in the history of mathematics. These improvements 
in agriculture fostered the division of labor, which 
is a form of Zhang civilization (rather in spiritual 
sense but not daily practical like culture).

Basic Set and Probability Theories

When discussing basic set and probability theories, 
numerous mathematical notations might be used or 
related. These notations are usually referred to as 
symbolism. Under the use of mathematical logic, 
a set of sentences can be expressed using formal 
language. When it is combined with a deductive 
apparatus, a formal system can be created. This is 
why mathematics is often viewed as a language. 
The following sections will describe set notations 
or symbolism in detail, which includes events and 
sample space, outcome spaces, Venn diagrams, 
independent events, exclusive events, conditional 
probabilities, and Bayes’ theorem.

Events, Sample, and Outcome Spaces of a 
Probability

In probability theory, all the possible outcomes 
may be grouped into a set, known as a sample 
space, and are denoted by S during an experiment 
is performed. If E is selected as a subset of the 
sample space S, it is called an event space. Set 
theory is used in probability because it fits basic 
requirements and modeling, since a set is just a 
collection of similar objects (a case study is the 
set of all possible outcomes). The outcome space 
refers to the set of all results from an experiment. 
It should also be noted that a trial (or experiment) 
is an infinitely repeated procedure together with a 
well-defined sample space.

P Event E OutcomeSpace
Sample Space

( ) =

Venn diagram, Independent, and Exclusive 
Events

As most probability theories are represented by 
sets, it is natural for a Venn diagram to be used for 

visualization. A Venn diagram shows relationships 
for sets and groups of objects – especially in 
depicting intersections, minus, exclude and 
include of sets, etc. For any two events, A and 
B are independent if the existence of A does not 
affect the existence of B. Or in symbolic form:
P (A and B) = P(A) P(B)
One case study is the tossing of a coin and getting 
“heads” together with rolling a dice and getting a 
five. They are independent of each other.

Next, for any two events, A and B are mutually 
exclusively if the occurrence of A and the 
occurrence of B cannot happen together. For 
example, one can either choose to turn left or 
right, but not both. Or in symbolic form:
P (A and B) = 0

Conditional Probability and Bayes’ Theorem

This usually refers to the conditional probability, 
as the probability of event A given that event B 
has just occurred. It is written in the symbolic 
form like the following diagram.

Practically speaking, the probability of rolling a 
“3” in a one-die toss is 1/6. However, when it is 
given that B = {3, 4, 5, 6}, then the probability of 
getting a {3} is only 1/4. This is the meaning of 
conditional probability. Furthermore, if event A is 
independent of event B, that is, P (A and B) = 0, 
one will have:
P (A | B) = P(A)
Bayes’ formula is often referred to when discussing 
conditional probability, which states the following:
Let the event A happened under a hypothesis Hi 
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with a known probability P (A | Hi). Furthermore, 
assume that the probabilities of hypotheses H1, 
H2,…, Hn are given (known). One may get the 
conditional probability of Hi where i = 1, 2 … n 
such that event A happened is:
P (Hi | A) = [P (A | Hi) P(Hi)/P(A) where P(A) = P 
(A | H1) + P (A | H2) +… + P(A | Hn)
Or the tree diagram,

Major Finding for Statistics

From symbolism, set theory, and basic probability, 
one can transcend it to explain the butterfly effect 
in terms of mathematical symbols.

Basic Combination and Permutation Theory

Given a collection of items, if one wants to 
select those from it where the order is not a 
matter (not counted), it is called a combination. 
For instance, this case study is of an apple, an 
orange, and a pear. As such, their combinations 
are the following: Apple, orange; apple, pear; 
and orange, pear. Similarly, considering a subset 
E, which contains k distinct elements of a set S, 
E is then called the k-combination of S. While on 
the other hand, the number of k-combinations of 
a set n is equal to:

n
r

n n n r
r r






=

−( )… − +
−( )…

1 1

1 1

( )

If a sequence (or order) is rearranged, where 
the order is taken into account, it is named 
as a permutation (without replacement) - n^r. 
Furthermore, after each selection of fruit is 
replaced (taken away), the result is: Apple, 
orange; apple, pear; orange, pear; orange, apple; 
pear, apple; apple, pear or 6.

( ) ( ) ( )n
r r

P n n 1  ! =
!

 n r 1n
n r

= − … − +
−

What is the Butterfly Effect?
The term was first introduced by meteorologist 
Edward Lorenz. The butterfly effect explains that 

a small change can lead to much greater (serious) 
consequences over time.

Catching the Butterfly: A Foreseeable 
Prediction

Consider the following imaginary statistical 
experiment that is often used when teaching 
statistics:
One should first toss three (or more) coins together 
in front of the participants, such that heads are on 
the front and tails are on back. The participants 
are then required to list all possible outcomes after 
tossing the coins.
In general, the set of all feasible results (outcomes) 
would be:
S = {HHH, HHT, THH, HTT, THT, TTH, 
TTT} (suppose one will obtain such expected 
result). There are also other combinations and 
permutations of heads and tails when each of them 
is assigned with a number. Hence, the outcome 
space is not just unique.
Finally, the participants must count the number of 
tails for each possible outcome and then list them 
on a table, as seen below:
Possible 
Outcomes (si) 

HHH HHT HTH THH HTT HTT TTH TTT

No. of tails 
obtained ti

0 1 1 1 2 2 2 3

(Clearly, the above table does NOT list all possible 
outcomes for tails.)
A function f (which should be called the random 
variable) must also be considered. Intuitively,
f maps all the possible outcomes (si) to the number 
of tails Ti fi: si |—→ ti (i.e., no. of tails obtained as 
it takes values t = 0,1,2,3 … by HKU, Dr. K.T. 
Leung’s lecture note 1993–1994) or strictly 
speaking
f: S—→ T (i.e., R – Real Number)
This is just a concept/definition of random 
variables. One must first group the outcome space 
into different categories and then map it onto 
the “feasible values of the random variables.” 
In normal circumstances, these values are real 
numbers, but there may also be other types of 
elements. These “special values of a random 
variable” are thus called “random elements.”
It should be noted that the random variable 
described is not the only choice, it depends on 
the mapping domain and its couple. Therefore, 
there may be a countable finite number of random 
variables, as mentioned above. The collection of 
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all random variables is called “random function” 
– F(X), and in addition, implies the “stochastic 
process” for handling randomness.
If one maps each value of categorized random 
variables into their own probability, the 
corresponding probability function can be 
formulated. When the occurring events are 
mutually exclusive, Bayes’ theorem can be 
applied to reveal the conditional possibilities of 
the corresponding elements in a series of sample 
space. Conversely, if these events are not mutually 
exclusive, the probability reduces to only a direct 
multiplication of two probabilities. The method 
to test the independence can only be through a 
numerical result, whether P (B | A) = P(B). Hence, 
one can make those necessary decisions (or even 
predictions).

In the above tree diagram, we group the result of 
tossing one tail and then assign it to random variable 
one; tossing two tails are assigned to random 
variable two and three tails to random variable 
three. The advantage of such mapping is that there 
are four catalogues with the probabilities: 1/8, 3/8, 
3/8, and 1/8, respectively. By applying conditional 
probability and Bayes’ theorem, one may guess in 
a reversing order about the initial chance of an 
event, together with a series of feasible chained 
outcomes. Furthermore, if all the mapped random 
variables can be found, every final consequence 
will be known.
This research attempts to investigate the 
following: Classifying all events that occur with 
similar properties (in the outcome space – such 
as same outcomes without considering order) 
and forming groups or catalogues. Then, they 
are mapping onto an individual random variable 
correspondingly. Every corresponding domino 
effect (or individual event) will be included 
(or caught). In addition, with the use of Bayes’ 
theorem, one may even look backwards to find 
the conditional probability of an event. Indeed, 

the random variable acts as a bridge that connects 
domino effects and the former experiment 
(chaos’) sample space. With the probability tree 
diagram (which will be described in the following 
section), all feasible probabilities can now be 
applied to those random variables to initiate 
a series of chain reactions, which lead to final 
outcomes. Hence, the “randomness” can now be 
calculated or even forecasted.

The Domino Effect

After mapping the random variable, one may 
intuitively map each ti into a category cai with 
same range r of marks such as “0–50;” “51–60;” 
“61–70;” “71–80;” “81–90;” and “91–100” that 
stepping wisely, then:
ei: ti |—→ cai or strictly speaking:
E: T—→ CA
(Case Study: Any school student’s examination 
marks must follow into either one of these 
categories.)
If one continues to map each of these cai with 
traditional “select…case…” programming 
statement to give out those decisions di like grade 
“F;” “E;” “D;” “C;” “B;” and “A” followed by 
predictable events pei such as “fail;” “marginal 
pass;” “fair pass;” “good;” “very good;” and 
“Excellent” computing algorithm, one will get:
sci: cai |—→ di;
dei: di |—→ pei
or strictly speaking:
SC: CA —→ DE;
DE: D —→ PE [Figure 14]
The above calculations are established to describe 
the following relationships:

The above calculations are established to describe 
the following relationships:
•	 Probability outcome spaces and real numbers;
•	 Real numbers and different categories;
•	 Categories and consequences.
Different categories and decisions (in this case, 
student grades) followed by predicable events 
– whether a student passes or fails and what 
proposed actions should be taken.
This case study maps all non-linear and non-
deterministic feasible outcomes (possibilities) 
onto something like real numbers (i.e., finding 
all possible random variables). A series of 
domino effects or one-to-one mapping [Figure 2] 
will be formed. As a result, linear phenomena 
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and conjugate cases can be predicted. More 
specifically, one can list/find all consequences 
and domino effects that might eventually occur 
due to the butterfly effect. I name such kind of 
methodology which catch the “Butterfly Effects” 
as the HKLam (’s Net-Seizing) Theory.
That said, there may be some errors when 
attempting to predict the results. This is due to the 
countless random variables that exist in a special 
non-deterministic event. Hence, one may use both 

Figure 1: Reproduction of a portion of the Moscow 
Papyrus, showing the problem of the volume of a 
frustum of a square pyramid, together with hieroglyphic 
transcription (Merzbach and Boyer, 2011)

Figure 2: Egyptians’ numeral system (Gullberg, 1997)

Figure 5: Theodorus of Cyrene (400 B.C.), etc., showed 
the irrationality of non-square integers from 3 to 17. The 
origin may come from Euclid, Book X, Proposition 8 
(Swetz, F. 1994)

Figure 8: Place value numerals in the Bakhshali 
manuscript (Katz, 2007)

Figure 3: Ancient Egypt’s representation of large number 
and fraction (Gullberg, 1997)

Figure 4: Plimpton 322 and YBC 7289 Clay tablet 
(Merzbach and Boyer, 2011)

Figure 6: Triples of values in YBC 7289 and its numeral 
approximation convergence (Dutka, 1986)[8]

Figure 7: Early Indian non-place value numeral forms 
(Katz, 2007)



Carson: From numerical values to theory

AJMS/Jul-Sep-2021/Special Issue 108

fuzzy logic and expected values to solve those 
unexpected events that occurred problems.
In brief, probability and combinatorics will be used 
to list all possible outcomes. The corresponding 
consequences will also be mapped with random 
variables, together with the previously probability. 
The figure in the next page follows is suggesting a 
generalized case for such an effect. Alternatively, by 
associated with a list of domino effects that mapped 
alongside suitable grouped random variables, the 

conditional probability of a related event to occur 
can be revealed. One case study is the forecasting 
typhoons in Hong Kong during autumn, where the 
weather system is complex. High-pressure systems, 
northeast monsoon winds, and west wind range 
effect, together with Fujiwhara effect, influence 
these predictions. When these factors are considered 
as domino effects and mapped alongside different 
grouped random variables, the corresponding 
conditional probability might be achieved. However, 
these results may not be accurate as weather patterns 
fall into the category of a chaos system. As such, 
forecasting probability must be the primary focus, 
as opposed to the real outcome.

SIGNIFICANCE OF RESEARCH

One of the significant contributions of this 
research is that it initializes the research of my 
proposed butterfly effect theory. This is because 
different random variables are able to map all 
feasible outcomes with a predictable output result. 
Therefore, all outcomes that correspond to the 

Figure 12: The Mainlanders’ Rod Numerals (Gullberg, 
1997). Early printed picture of an abacus on the right 
(Merzbach and Boyer, 2011, p.179).

Figure 13: Rather than recording numerals, Zhang Dynasty relics also demonstrate China’s culture and civilization during 
this era. Pictures come from Katz (2007)

Figure 9: Mainland’s knots in strings (Cajori, 1993)[1]

4 9 2
3 5 7
8 1 6

1 2 3
2 3 2
3 1 1

Figure 10: Mainland’s magic square

0 0 3
0 5 2
36 1 1

3x + 2y + z = 39 
2x + 3y + z = 34 
x + 2y + 3z = 26

Figure 11: System of simultaneous linear equation Column 
operations on the matrix (Merzbach and Boyer, 2011)
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butterfly effect can be caught (included) in any 
one of the predicted outcome domino cases. These 
findings are only the beginning of such research. 
Furthermore, there are many applications from 
this study, which are listed in the following:

Cutting “Tofu” for Better Data Storage

How should tofu be with fewer cuts in order to 
achieve the best number of sub-cubes outcomes? 
Such kind of cutting Tofu is indeed a random process 
(which is a non-linear and non-deterministic one) 
where people may find the best efficient cutting 
for the same amount of data storage. Each feasible 
cutting method corresponds to an individual 
probability. Different types of data storage may 
correspond to different groups of cutting methods. 
These routes are respectively corresponding to 
various grouped random variables. The best possible 
result with the most efficient capacity and shortest 
cutting routes can then be calculated. Moreover, to 
practically solve this problem, the combinatorics 
and inclusion-exclusion principle together with 
systems of distinct representatives will be needed 
to find all of the cutting routes. Hence, through 
my butterfly philosophy, one can easily find the 
best minimum cuts in order to maximize the data 
storage. Even in the case of data searching, it can 
be made faster since the best route findings are 
easier. This can help us establish a future digital 
library. From mathematical representation theory, 
the corresponding one is social representation 
theory, which implies the existence of different 
school cultures and the diversity.

Building a Quantum Computer Chip with 
Musical Resonance

One can even build a quantum computer chip 
with suitable resonance as the control. This 

might be possible as both the quantum spin 
and their entanglement are unpredictable in 
normal situations. That is why these spins and 
entanglements are non-deterministic and non-
linear. As a result, this study’s statistical method 
might be able to predict all feasible outcomes 
of the spin and entanglement. Furthermore, if 
musical resonance can be created to control the 
spins and entanglements, one can even build 
quantum computer chips in a practical manner.

Predicting Customer Behavior

Through this study’s statistical random variables, 
one might be able to predict customer behavior, 
as these behaviors are also non-deterministic and 
non-linear. Hence, all outcomes and consequences 
are able to be predicted.

Making the Best Decisions for Events to Occur 
in the Multiverse

The multiverse has many possible choices. By 
employing this study’s butterfly effect philosophy, 
all possible consequences of an event can be 
revealed. The best route can then be chosen 
according to the different probabilities and chained 
consequences.

Establishing a Management System to Control 
Different Home used Radio Waves

Today’s homes have many electromagnetic waves 
such as infrared, Wi-Fi, RF, and Bluetooth. By 
introducing a management information system 
(MIS) (together with a password) to assign each 
electromagnetic wave with a suitable channel, 
one can login into an individual network system, 
one at a time, without causing any interference. 

Figure 14: The mapping of random variables which may predict feasible outcomes
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Conversely, with similar MIS, electronic devices 
can be introduced (such as D1 min-pro) to 
collect electromagnetic waves. Although the 
received electronic signals are in square form, by 
adding suitable electronic circuits with suitable 
magnifying effects and smoothing properties, it 
feasible to use capacitors and chargeable batteries 
to store electrical energy back in achieving our 
daily usage consumption.

CONCLUSION

Symbolism is closely connected with modern 
mathematics. As previously mentioned, 
mathematics symbols first appeared as visual 
objects, such as animals. These primitive symbols 
were conceptualized to form numeral symbols, 
which were then simplified into notations. The 
collection of these symbols may form words. 
Mathematics can thus be seen as a type of language 
as it has language-type properties such a grammar. 
One may refer this as the formal language or 
linguistic. Furthermore, it provides quantitative 
rational foundations (a kind of instrument) for 
different subjects such as physics. This constitutes 
to a linking, which relates to mathematics. As such, 
someone considers mathematics as the language 
of science. One may even consider mathematics 
as a “public servant” to these subjects. Obviously, 
when one views from history, one must relate 
its connections with human endeavors. These 
achievements are naturally be included as part of 
the subject where mathematics is a fraction of our 
culture. In other words, our culture is composed 
of human endeavor which is well connected with 
mathematics. Therefore, mathematics is a part of 
culture. The similar situation does apply in the 
civilization as it is only defined by the spiritual 
section of the relationships. As mentioned before, 
there are human activities/achievements, which, 
in turn, were viewed as symbolic representations 
or cultural symbols. Indeed, these human 
endeavors, which reflect the spiritual, social, 
customs, and values, etc., at that particular 
historical moment, show the civilization of the 
country. As mathematics is developed naturally all 
around our world and reflected back in different 
civilizations, it is naturally to think that the subject 
is the common area (or language) of our human to 
depict our knowledge in every era. It is obviously 

that the aim of mathematics is developed to help 
us discover our universe or even implies the 
existence of only God, Jehovah who sends us the 
gift. In other words, without mathematics, our 
world will not be such rationalized and the order 
will not be discovered. Human endeavor will not 
be important and there would be no more modern 
civilization as nowadays.

The relationship diagram links with mathematics 
and cultures and civilization. It also implies the 
existence of unique God, Yahweh.
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