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ABSTRACT
Cancer has a long time history in our human health experience. Practically, one-fifth of the disease was 
caused by virus infection. Thus, it is important for us to understand the virus-cancer infection mechanism. 
Statistically, we may perform the necessary causality regression analysis in such situation to build up the 
corresponding model just like my previous case in influenza-weather infection. In the present research, I 
will interaction the systems of differential equations (Lorenz System) with my HKLam theory and figure 
out the recursive result that we may get. Then, we may go ahead for the corresponding policy generated 
from the dynamic programming that can solve the Markov decision process. In addition, we may apply 
the HKLam theory to the chaotic time series and compare the model with machine learning one for a 
better selection with failure explanation. Finally, I will also discuss a novel mathematical method in 
determining the saddle point in Lorenz attractor together with the gradient descent. The aim is to find 
the equilibrium for the Lorenz attractor with given initial conditions. It is hope that the mathematics-
statistics interaction together with the causal regression (artificial intelligence) model may finally help 
us fight against those diseases such as virus-infected cancer or others.
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INTRODUCTION

Cancer has been a serious disease in our medical 
history and human is now trying to conquer it. 
Indeed, the most advanced and recent research 
shows that different viruses play a significant role 
in the formation of various cancer diseases. In 
the following content, I shall outline the feasible 
causal (regression) analysis (or the artificial 
intelligence modeling) for the cancer formation 
under the corresponding virus attack. According 
to Zheng et al.,[1] alcohol can induce hepatitis C 
virus (HCV)-hepatocellular carcinoma that causes 
the DNA methylation of repetitive elements. These 
elements may include long interspersed nuclear 
element-1 and all elements (Alu). Joyce’s research 
team further concludes that HCV inflection has a 
strong highly connection with the loss of DNA 
methylation in the specific REs. This event is then 

implicating molecular mechanisms in the liver 
cancer development.[2,3]

LITERATURE REVIEW

If one is investigating the DNA methylation 
in a deeper aspect, Cho et al.,[4] found that 
tobacco smoking may change the transcription 
and methylation states of extracellular matrix 
organization-related genes. I want to remark here 
that tuberculosis virus may increase the risk of the 
lung cancer that is highly related to the smoking. 
In such case, DNA methylation patterns will 
be changed and hence altered the transcription 
states of genes. To be more precise, proteins will 
bind to methylated DNA. These DNA will then 
form complex with the proteins that formulated 
during the process of deacetylated of histones. 
Therefore, when DNA is undergone the process 
of methylation, the nearby histones will also 
deacetylated. The outcome is the compounded 
inhibitory effects on transcription. Similarly, 
demethylated DNA will not cause the attachment 
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of deacetylated enzymes to the histones and hence 
this event will allow DNA to keep their status to 
be acetylated and more mobile, thus promoting 
transcription to be happened.
Next, when the transcription that indirectly caused 
by virus happens, lipidomics among cells may 
occur (Chakrabarti et al.,).[5] As a return, this 
event could obviously lead to the problem of lipid 
metabolism and hence cause the metabolic health 
issue. Snaebjornsson et al.[6] even told us that by 
altering lipid metabolism, one may even develop a 
possible therapeutic window for cancer treatment. 
Thus, with reference to my paper in causal 
(regression) analysis as shown in Shun,[7] one may 
deduce the following causality domino effects for 
the possible cancer formation mechanism:
Virus infection→DNA methylation→transcription 
occurs→lipidomics→metabolic problem→cancer 
formation
Then with the suitable bioinformatics cancer data, 
one may follow the procedure as stated in my 
previous mentioned paper to establish the wanted 
Hayes Process model[8] (or the A.I. model) for such 
type of virus leading cancer formation mechanism. 
To go in depth, one may further perform the 
heterogeneous analysis together with the spatial 
one for the cancer formation mechanism, etc. 
Indeed, it is no doubt that other disease infection 
mechanism like the COVID-19 can also be 
modeled by the same or similar methods if we can 
find out the infection details inside our body cells 
from experiments, etc.

RESULTS AND DISCUSSION

The Butterfly Effects in Our World’s Climate 
and Public Health

In the traditional chaos theory, the butterfly 
effect[9] always refers to the sensitive dependence 
on initial conditions. That is, the small change in 
one state of the initial conditions of a deterministic 
non-linear system will produce a large difference 
in the later state. Historically, the term came from 
the mathematician and meteorologist Edward 
Lorenz. He discovered that the time of formation 
together with the path taken of a tomada could be 
influenced by some minor perturbations. One of 
the cases is a distant butterfly flapping its wings 
several weeks earlier. Similarly, Lorenz also noted 
that when he tried to round the initial condition 
data value of his weather model, the result would 

not be the same as the unrounded weather model. 
Hence, he concluded that a small change in the 
initial conditions had created a significantly 
different outcome. Hence, the butterfly effects 
occur in the most case of weather (or climate) 
prediction from the so-called Lorenz system which 
is a set of system equations.[9] It can be interacted 
with my HKLam theory that will be shown later in 
this research paper. Other than weathering model, 
one may also construct the corresponding SIR 
mathematical (or the compartmental) model in 
epidemiology where S is the stock of susceptible 
population, I is the stock of infected, and R is the 
stock of removed population. According to Gourley 
et al.,[10] in the case of hepatitis B virus infection, 
we may employ the following phenomenological 
model (for another interaction with my HKLam 
Theory) as shown below:
x’(t) = λ–dx–βνx______________ equation (A)
y’(t) = βνx – ay______________ equation (B)
ν’(t) = ky – μν______________ equation (C)
Where, x, y, and ν are numbers of uninfected liver 
cells, infected cells, and free virions, respectively;
λ represents the (constant) rate where the 
uninfected liver cells produced, dx means the 
linear term of maintaining tissue homeostasis in 
the face of hepatocyte turnover. During infection, 
healthy liver cells are assumed to become infected 
at a rate βνx, where β is the mass action rate 
constant describing the infection process. Infected 
liver cells are killed by immune cells at rate ay 
and produce free virons at rate ky, where k is the 
so-called “burst” constant. Free virons are cleared 
by lymphatic and other mechanisms at rate μν, 
where, μ is a constant. In the present paper, I 
will just focus in the interaction between HKLam 
theory and the Lorenz system only.

What is “chaos”?

From the process of creating heaven and earth in 
the Bible, we know:
“The ground is empty and chaotic, the abyss 
above is dark, and the spirit of God is running on 
the water.”
In addition, we can take a review from the Kellert’s 
book:[11]

Qualitative definition
What Stephen Kellert (Stephen Kellert) did 
define chaos theory is “a qualitative study of 
unstable non-periodic behavior in deterministic 
nonlinear dynamic systems” (1993, p. 2). This 
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chaos definition may confirm it to belong to 
just an attribute of nonlinear dynamical systems 
(although in some part of his book (1993), 
Kellert mentioned quite ambiguous about chaos 
in a mathematical model quantitatively or even a 
real-world system). In other words, chaos can be 
defined to be an attribute in terms of mathematical 
models. According to Kellert’s definition, there 
are two key characteristics and they are instability 
and aperiodicity.[12] Unstable system usually refers 
to the SDIC or the sensitive dependence on initial 
conditions. Non-periodic behavior implies that 
the system variables will not repeat any value 
once more. Thus, in a nonlinear dynamic system, 
chaos can be viewed both as an unstable and non-
periodic behavior.[13]

Quantitative definition
Suppose X(0) and y(0) are the two initial conditions 
for two individual different trajectories.[14] Then, 
we define the weakly sensitive dependencies 
(WSD) – as a system that characterizes by J(x(t)),
When ∃ε> 0, it has the properties of low sensitivity 
to former described initial conditions, such that
∃ε>0,∀x(0),∀δ>0,∃t>0,∃y(0), with the following 
inequalities hold:

|x(0)−y(0)|<δ and |J(x(t))−J(y(t))|>ε.
The basic idea is that:
No matter the propagator how close x(0) is 
approaching to y(0); the trajectory starting from 
y(0) will still be separated from x(0) by a “ε” 
distant. On the contrary, WSD does not abstractly 
specify the divergence rate (that may be compared 
with the linear divergence). Or one may need to 
specify the number of points around x(0) that will 
finally produce different trajectories – a set of 
arbitrary measures, such as zero.
However, chaos is usually characterized with the 
sensitive dependence:
∃λ such that for almost all points x(0),
∀δ>0∃t>0 such that for almost all points y(0)in a 
small neighborhood (δ) around dx(0),
We always have:
|x(0)−y(0)|<δand|J(x(t))−J(y(t)) |≈|J(x(0))−J(y(0))|eλt,
Where the “almost all” caveat means all points in 
state space with the exception that it is not true for 
a set of measure zero. Here, λ is considered as the 
largest global Lyapunov exponent and is taken to 
be the average rate of divergence of neighboring 
trajectories. In addition, λ issues a forth from 
some small neighborhood which is centered 
around on dx(0). Exponential growth is implied if 

λ>0 (converged when λ<0). In general, the growth 
cannot go continuously until infinity. If the system 
is bounded in space together with momentum, 
limits exist and this can help us determine how 
far the nearby trajectories will diverge from one 
another.[24]

Lorenz Attractor

The Lorenz system is indeed consisting a set of 
system differential equations which is first under 
the investigation of Edward Lorenz. When one is 
applying certain parameters and initial values, the 
chaotic solutions will then appear. Or in particular 
speaking, the Lorenz attractor is actually a set of 
chaotic answers to the prescribed Lorenz system. 
In our usual meaning, the “butterfly effect” may 
stem from our real-world implications of the 
Lorenz attractor. In other words, for any physical 
system, without the perfect knowledge of the initial 
conditions (such as the situation of minuscule 
disturbance to the air as the result of a butterfly 
flapping its wings), our intention does to predict its 
future course will face a failure. This event shows 
that physical systems may be actually deterministic 
and is in fact still be inherently unpredictable 
when the quantum effects are ignored. The shape 
of the Lorenz attractor is shown in Figure 1, when 
plotted graphically by the software R, can be seen 
to resemble like a butterfly.
When we are talking about the periodic properties 
of the Lorenz Attractor, we may refer it as the 
chaotic time series. According to Kose et al.,[15] we 
can forecast the series through Vortex Optimization 
Algorithm. In such case, the chaotic time series 
will be divided into the training stage and the 
testing one in the prediction process. This event is 
just like the business machine learning process in 
the study of influenza-weather prediction, Shun, 
2020.[16] That is, we may modify the techniques 
in Shun, 2020,[16] for the business software R to 
the present prediction in chaotic time series. In 

Figure 1: Lorenz attractor that appears in form of chaos 
about the world climate – plotted from R-studio software
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reality, the programming code will be left to those 
professional R programmers as this event is out of 
the scope the present paper. This author will only 
pinpoint the similar idea that lays behind. To go a 
further step, one may employ the likelihood and 
Bayesian prediction for the chaotic system. This 
author wants to note that my HKLam theory does 
create a bridge (a linear transformation) for the 
connection between the chaos non-linear part and 
the regression (or the approximation) for the linear 
part. The theory can thus be applied in the prediction 
(from the approximated model) of the chaotic 
system or the chaotic time series. In practice, there 
is a simple method to detect chaos in nature that is 
developed by Toker et al.[17] We may establish the 
approximated model through HKLam theory and 
perform the necessary prediction when the system 
is chaotic with reference to the aforementioned 
methods described in the former part of this section.
Practically, we may have the following algorithm 
in establishing the best model for chaotic time 
series prediction:
1. Use a periodic chaos packages to determine 

whether chaotic time series exists
2. Transform the chaotic time series into Markov 

Chain matrix through the stochastic process 
and apply HKLam theory to obtain the wanted 
regression approximation model (RAM) for 
prediction

3. From the chaotic time series to establish the 
machine learning model (MLM) by training 
and testing for another prediction

4. Compare both of the models – (RAM and MLM), 
select the best model and explain for the failure

5. Both of the above prediction methods 
constitute a kind of philosophy.

Interaction between Lorenz System and 
HKLam Theory

In fact, the Lorenz differential system (or other 
differential equation models like the SERI) can 
be expressed in terms of a matrix. In addition, 
it is feasible that these matrices are capable of 
written by HKLam’s (Net-Seizing) theorem. The 
following is one of the examples:
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(1) and continues this (in fact which is initially an 
infinite and) recursive process (such that this is a 
kind of mathematical formalism) until the linear 
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optimal approximation for a given set of values 
(ϭ1, þ1, β1) in the Lorenz attractor. In this case, 
we have got the wanted real values of the linear 
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can estimate back the corresponding true values of 
(ϭ2, þ2, β2) and get the optimal values in the 
Lorenz attractor. Hence, in terms of weather 
management, we can determine the consequence 
risks behind. Thus, we may associate with the 
most feasible warnings and give in advance by 
applying some suitable decision theories. In such 
case, we are actually using the HKLam theory to 
net-seize those changes in our earth weathering 
butterfly effect (or the Lorenz attractor). Similar 
cases happen in other differential equation models 
such as in the viruses mutation in microbiology 
(cancer research) together with the spread of other 
viruses (influenza and COVID-19, for example) 
in our public health.
Take for some case studies, let’s consider a set of 
values for (ϭ = 10, þ, β = 8/3, z = 1, x = 1) and 
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interact with one of the regression model equation 
in Lam March, 2020,[18] we may get:
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Approximate the matrix by a linear regression, we 
also have:
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get:

( )AX +














ε0

2

L
T  = (4.3685.53 + 26.71*wind–2.185 

*wettest–2054.05 * temperature; or

L
T
2















 = (AX +ε0)
–1* [(4.3685.53+26.71*wind–

2.185*wettest–2054.05*temperature]
 equation (3’)
Let B = (4.3685.53+26.71*wind–2.185*wettest–
2054.05*temperature

−
− + −














+ =−

10 10 0

1 1 0

0 1 8 3

0þ

/

[( ) * ]AX  B   B1

−
− + −













= + − −

10 10 0

1 1 0

0 1 8 3

0þ

/

� * [( ) * ] B  AX  B1 1

Continue the above process for the second time, 
we get:
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A-1 and the
Communicative, distributive properties of matrix
Multiplication
If furthermore, the Lorenz matrix can be QR 
decomposed, then we may have:
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Obviously, the above sample Lorenz matrix (with 
assumed parameters) shows that we can always 
express it as the formative and recursive format 
by the linear regression approximation.
In general, the formative recursion computing can 
be solved by five steps process:
1. Find out the simplest possible input
2. Play and visualize around with examples
3. Relates hard cases to simpler cases
4. Generalize the pattern
5. Write computer code by combining recursive 

pattern with the base case.
Practically, for the computer recursive problem 
like the one as Lorenz-HKLam interaction above, 
we may solve it through the five steps process. 
Moreover, for the computer halting problem, may 
we hope to solve it by installing a backup system 
which can monitor all of the recursive process? 
The backup will automatically solve the problem 
by the above five steps before any restarting of the 
major system. Hence, the recursive halting one is 
now completely settled down. In fact, the five steps 
can be extended into our dynamic programming 
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which may include reductions of the (recursive) 
problem, shortest path finding, etc. The every 
details of the dynamic programming can be found 
elsewhere in the web and the major concerns of 
this paper are the computational method about 
the interaction between differential systems and 
regression approximation (or HKLam Theory).

Lorenz System and Fast Saddle Point Finding 
Approximation Algorithm

Furthermore, from the Lorenz system, we know:
 = ϭ (y–x) (1)
 = þx–y–xz (2)
 = xy–βz (3)
Suppose that we want to get the best-fit regression 
line to predict the value of ui, vj, and wk based on 
the given input value xi, yj, and zk with respect to 
the domino regression function hθ(xi), g

θ(yj), and 
fθ(zk) then according to gradient descent in linear 
regression (with the cost functions), we have:
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If we compare the system {(1), (2), (3)} and {(1)*, 
(2)*, (3)*}, we get:
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Now, it is clear that ϭ, þ, and β can be expressed 
as the linear regressions of functions hθ(xi), gθ(yj), 
and fθ(zk) and x, y, and z, etc. Moreover, one can 

collect all of the inflection points of the Bayesian 
optimization functions (in one set say A) together 
with the true functions (in another set, say B). 
Instead of a slow point-wise gradient descent 
algorithm, we may first select one of the inflection 
points in set A. Next, we join the maxima or minima 
to the part of the approximated function (in quadratic 
appearance). Then, we introduce algorithmic and 
dialectic mathematics proof, which can accelerate 
the convergent rate in a faster way (as opposed to 
the aforementioned gradient descent) and find the 
corrected optimal (or the intersection) point. Both 
Figures 2 and 3 work together showing how the 
mathematical concepts or the ideas that lay behind the 
above depictions. Hence, when my HKLam theory is 
interacting with the Lorenz system, the above is the 
best method to find the wanted optimized point (or 
the saddle) for them. This is how we can compute the 
equilibrium from the interaction between the system 
and theory. Therefore, by controlling different values 
of ϭ, þ, and β, we may get different linear regression 
functions correspondingly.[19] In addition, we may 
shift from one saddle point to another until we find 
the best optimized one.
The following is the corresponding R programming 
code for a comparison between fixed-point 
algorithm and the gradient descent algorithm 
through the polynomial regression:[20]

Library (tidy verse)
Library (caret)
Theme set(theme_classic())
data(“XXXXXX”, package = “MASS”)
set.seed (123)
Training. Samples <- XXXXXX$medv %>%
createDataPartition(p = 0.8, list = FALSE)
train.data <- XXXXXX[training.samples,]
test.data <- XXXXXX[-training.samples,]
model <- lm(medv ~ poly(lstat, 5, raw = TRUE), 
data = train.data)
predictions <- model %>% predict(test.data)
data.frame (RMSE = RMSE(predictions, test.
data$medv),
R2 = R2 (predictions, test.data$medv))
gg plot(train.data, aes(lstat, medv)) + geom_
point() +
stat_smooth (method = lm, formula = y ~ poly(x, 
5, raw = TRUE))
#Fixed-point Algorithm#
f <- function(x)
{
Fit = lm(medv ~ poly(lstat, 5, raw = TRUE), data 
= train.data)
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}
x=0
x= f(x)
temp = 0
err = 1
temploop <- readline (prompt=“Enter the number 
of iteration:”)
n=temploop
for (i in 1:temploop)
if (err>0.00001){
temp=x
x=f(x)
print(i)
print(“th Iteration: ”)
print(x)
err = (x - temp)/x
If (err<0) err = 0 - err
i = I+1
}
Print (i)
Print (x)
According to Mustapha,[21] we may find the 
corresponding gradient descent algorithm and the 
steepest descent one will be find in Carathéodory.[22] 
Then, we may proceed to the Bayesian distributed 
stochastic descent.

Bayesian Distributed Stochastic Gradient 
Descent

For the further advance in the saddle point 
finding, may we apply the convector concept in 
the gradient descent algorithm and the segment of 
partial code in R:[23]

W <- c(0.1, 0.2); b <- 0.3; learn <–0.1
x <- matrix(c(0, 0, 1, 1, 0, 1, 0, 1), now = 4)
Y <- c(0, 1, 1, 1)
F <- function (w, x, b) w %*% t(x) + b
Step <- function(x) ifelse(x < 0, 0, 1)
For (I in 1:10) {
F1 <- f(w, x, b)
w <- w - c(sum(learn * 2 * (pmax(0, F1) - y) * 
step(F1) * x[,1]),
sum (learn * 2 * (pmax(0, F1) - y) * step(F1) * x[,2]))
b <- b – sum (learn * 2 * (pmax(0, F1) - y) * 
step(F1))
…
(f(w, x, b) > 0.5) = as. logical(y)
…
Indeed, the exact R programming implementation 
is out of the scope of the present paper since this 
author is NOT a professional programmer.
If we consider those convectors as a network of 

Figure 2: Using the Bayesian optimization function to approximate the model of the true function[24]

Figure 3: Steps in finding the true local minima and the intersection (optimal) point (of the HKLam theory and Lorenz 
system) between the Bayesian optimization function and the model of the true function. In fact, the present method 
(modified from fixed-point algorithm[28]) convergent rate is clearly much faster than the point-wise gradient descent 
algorithm
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graph, then the problem of finding the saddle 
point or the equilibrium in the Lorenz attractor is 
immediately reduced into a shortest path problem. 
In such a way, we are indeed transforming the 
problem into a mathematical graph shortest path 
searching one. The problem can be solved this by 
the Dijkstra’s algorithm.[25]

CONCLUSION AND APPLICATIONS

One of the most important applications of the so-
called “Gradient Descent” is their usage in daily life 
for finding the singularity such as the nature one – 
black hole. In fact, from Levant et al.,[26] they have 
discovered that the Hessian of the loss function in 
deep learning is indeed degenerating. Practically, 
we may be able to look beyond the basins if we can 
further explore the energy landscape of the loss 
functions. This event may reduce our problem into 
singularity and minimal surface. Indeed, the black 
hole can be viewed as the Gabriel’s Trumpet. It 
may be well quantized according to one of my 
paper.[27] Another thing to do is to find the low 
energy paths between solutions. Then, one may 
know which kind of flatness in such landscapes. 
Indeed, by understanding these energy paths, one 
may further compute and predict the black hole 
evaporation phenomenon.[28] Indeed, the quantized 
entropy mass inside the black hole indicates that 
there is the possibility in the formulation of our 
quantum gravity theory in the very soon future. 
Indeed, my present rough idea is a hybrid theory 
between the string and the loop quantum gravity 
(which may be a duality just like the wave-particle 
one). This is because string theory is responsible 
for the higher dimensional space but lacks the 
capability of quantization such as the case in black 
hole. However, for the loop quantum gravity, it 
can quantize the space-time very well but lacks 
the ability to work in a higher dimensional space. 
Hence, my suggestion is a mixed one. Or may the 
researchers fit back the observed experimental 
data into the computational machine in finding 
the corrected version of quantum gravity theory. 
However, the finding of the exact quantum gravity 
theory is out of the scope of the present scholar 
paper.
Furthermore, when one is trying to handle the 
recursive or the Markov (chained or intuitionism) 
decision process, one may settle down the issue 
by a dynamic programming. Indeed, the Markov 
decision process (MDP) is useful for the study of 

optimization problem through a suitable dynamic 
programming algorithm (or it can solve the MDP 
with finite states and action spaces).[29] Moreover, 
from the MDP, we may construct a framework to 
solve most of the reinforcement learning problem 
which is one of the branches in machine learning. 
I remark that in practice, the goal of a MDP is to 
find a good “policy” for a decision maker.[30] One 
may usually refer dynamic programming (DP) 
as a collection of algorithms using to compute 
optimal policies when there is a perfect model of 
the environment as a MDP.[31]

All in all, we may interact the chaos or the Lorenz 
system by my HKLam theory. Then, we may 
form the wanted recursive or the MDP and solve 
this model by dynamic programming in order to 
generate a suitable policy when making a decision. 
At the same time, we may also find the saddle point 
(or the equilibrium of the Lorenz attractor) when 
we are performing the regression approximation 
to Lorenz system by gradient descending. Or the 
interaction (regression approximation) between 
the Lorenz system and HKLam theory can even 
be extended into various fields (like the subject 
philosophy), Markov Chain Model in geography 
– suggested by a Russian mathematician Markov, 
for example.[32] This author believes that there 
are still plenty of rooms existing in the matters of 
interacting (approximating) the Lorenz (or similar 
differential systems) from my HKLam theory, 
especially in some other scientific area for those 
researchers to have their future investigations.
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