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ABSTRACT
In this paper, we have defined a class of functions represented by generalized Dirichlet series whose 
coefficients satisfy certain given conditions. Region of convergence is obtained depending on the fixed 
Dirichlet series. This class is complete and becomes an Hilbert space with respect to the inner product 
defined. Schauder basis is also obtained.
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INTRODUCTION

In the present work, we shall throughout consider 
the functions `f’ represented by generalized 
Dirichlet series f s a ek

s
k

k( ) = =

∞∑ 
1

 with positive 
exponents rather than negative ones. It is just to 
have an analogy with the power series a zk

k
k=

∞∑ 1
. 

The only difference in the characteristics of the 
Dirichlet series with positive exponents, as 
compared to the same, with negative exponents 
lies in the region of their convergence that is what 
we call the half plane of convergence. The 
Dirichlet series with positive exponents converges 
in the left half plane whereas the one with negative 
exponents converges in the right half plane. We 
shall also take the liberty of interpreting the results 
of all those workers who have considered the 
Dirichlet series with negative exponents in our 
terminology.[1-5]

It is well known that the Dirichlet series[2,5] with 
positive exponents (frequencies), in its most 
generalized form, is given by

f s a ek
s

k
k( ) = =

∞∑ 
1

 (1.1)

Where, s=σ+it (σ,t real variables),{ak} in general, 
is a complex sequence, {λk} is a strictly increasing 

sequence of positive real numbers, and λk→∞ as 
k→∞. It has been proved in[2] that the exponents 
{λk} satisfy

limsupk
k

logk D→ ∞ = < ∞


 (1.2)

The abscissa of ordinary convergence (abs. 
convergence) σc (σa) of the Dirichlet series (1.1) 
is defined as the least upper bound of all those `σ’ 
for which the series converges (abs.). These are 
given as follows
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Also
0 ≤ − ≤ c a D  (1.5)

If D given in Equation (1.2) is zero, then the 
abscissa of ordinary convergence, that is, σc and 
the abscissa of absolute convergence, that is, σa 
have the same value which is given by,

σ σ
α

λc a k
k

k

log
= = − → ∞limsup  (1.6)

Let

u s( ) = =

∞∑ α λ
k
s

k
e k

1
 (1.7)

be a fixed Dirichlet serieswith given exponents or 
frequencies {λk} satisfying,

limsupk
k

logk D→ ∞ = < ∞


 (1.8)

and the coefficients {αk} being a fixed sequence 
of non-zero complex numbers satisfying the 
condition,

−limsupk
k

k

log
A→ ∞ =

α
λ

 (1.9)

Where, A is any arbitrary but fixed real number. If 
D is zero, then the Dirichlet series u(s) has 
coincident abscissa of absolute convergence ( ) a

u  
and abscissa of ordinary convergence ( ) c

u , which 
is given by the formula,

σ σ
α

λc
u

a
u k

k

k

log
A= = − =→ ∞limsup  (1.10)

or equivalently by − =→ ∞
−limsupk ka ek
A

1

 .

The left plane σ<A is denoted by Ru and is called 
the region of convergence of the fixed Dirichlet 
series u(s). Furthermore, the series u(s) converges 
uniformly in each left half plane σ=A-ϵ, ϵ>0. The 
sum of the series u(s) is an analytic function in the 
left half plane σ<A and an entire function if A=+∞. 
The coefficients of the fixed Dirichlet series can 
be expressed in terms of its sum function by the 
Hadamard formula,
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Let the class Ω(u,p) is defined as follows,

Ω(u,p)={ :f f s a ek
s

k
k( ) = =

∞∑ 
1

 and 

a

±
  1k

k

p

k
< ∞ ≤ <

=∑ for p ∞
∞

}
1

It can easily be seen that the function `u’ given by 
the fixed Dirichlet series u(s) does not belong to 
Ω(u,p) for p≥1.
Now, for f f s a ekk

s k, ( ) = =

∞∑ 1

  and 

g  g s u,p, ( ) = ∈ ( )=

∞∑ b ekk
s k

1

 &

We define the following pointwise linear 
operations and norm in Ω(u,p) as in the space Ωu,c) 
in the following way.

a. ( ) ( )f a b ek k
s

k
k+ ( ) = +

=

∞∑g s


1

b. µ µ λf s a ek
s

k
k( )( ) = =

∞∑ 1
 where μ is a 

scalar

c. f p
p

k
=

=

∞∑ a

±

k

k

p

1

Clearly, f p
p  exists. It can further be seen that 

Ω(u,p) is a normed linear space also.

Ω(u,p) As a Banach space[2]

Here, we have proved that Ω(u,p) is a Banach 
space for 1≤p<∞ which cannot become a Hilbert 
space unless p=2 and possess the property of 
uniform convergence[3] over every compact subset 
in the region of convergence Ru of u.
Theorem [1]:
Ω(u,p) is a Banach space for p≥1.
Proof:
Let {fl} be a Cauchy sequence in Ω(u,p) such that 
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Since, {fl} is a Cauchy sequence in Ω(u,p) so, for 
a given ∈>0, there exists a positive integer N0 (∈) 
such that

f fl m p
− <∈ for l,m N> ∈( )0

or a alk mk

k
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p p
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 (2.1)

⇒ a alk mk
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p
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
 for each k
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⇒ a alk mk

k

− <∈


�  for each k

This shows that alk
k









 is a Cauchy sequence in C 

for each k and so converges to a k

k

0


(say) as l→∞.

i.e., liml
lk

k

k

k

a a
→ ∞ =

 
0

Define a f s a ek
s

k
k

0 01
( ) = =

∞∑  , we show that fl→f0 

as l→∞ and f0∈Ω(u,p).
From Equation (2.1), we see that for any positive 

integer m, a alk mk

k

p
p

k

m −
=

<∈∑ 1
. Let m→∞ then 

a alk k

k

p
p

k
−

=

∞ <∈ <∈∑ 0

1 
 for l>N0 (∈). This shows 

that (fl-f0) belongs to Ω(u,p) such that f fl p− <∈0  

i.e. fl→f0 as →∞. Now, it follows then f0=fl+(f0-fl) 
∈Ω(u,p).
Theorem [2]:
fl→f in Ω(u,p)⇒ fl (s)→f(s) uniformly over every 
compact subset of the region of convergence Ru 
of u.
Proof:
Let S be a compact subset in the region of 
convergence Ru, then we get a rectangle T in Ru 
containing S where
T={(σ,t):σ1≤σ≤σ2,t1≤t≤t2}
Let
σ3 satisfies σ2<σ3<σ so that θ

σ

σ= <e
e

2

3
1 . Then, for 

any given ϵ>0 choose a `η’ such that

η θ λ
.M k

k=

∞∑ <
1

  where ± e Mk
k� �3 ≤ < ∞

and
f fl p
− <  for l l≥ ( )0 

⇒ a alk k

k

p

k

−
≤

=

∞∑ 
· p

1
 for l l≥ ( )0 

a alk k

k

p
p−

<
α

η  for each k=1,2,3,…. l≥l0 (η)

Then for s ∈S and l ≥l0, we have

f s f s a a el lk kk
k( ) − ( ) ≤ −

=

∞∑ σλ
1

≤
−

=

∞∑ a alk k

k
k 

± ek
k��
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3 k k
kk 1 k 1

e M  ∞ ∞σ λ λ
= =

≤ η α ≤ η θ < ε∑ ∑
which proves uniform convergence[3] over every 
compact subset of the region of convergence 
Ru of u.
Theorem [3]:
Ω(u,p) cannot become a Hilbert space unless p=2.
Proof:
Let f s es( ) = + 1 2

1 2λ λes , 

g s es( ) = + −α αλ λ
1 2

1 2( )es . Clearly, f,g ∈Ω(u,p). 

For p≠2, we see that
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2 2

p p  for p≠2. Thus, Parallelogram 

law[1,6] does not hold showing that it is not a Hilbert 
space.
Next, we find Schauder basis[4] for Ω(u,p) (1≤p<∞) 
in the following Lemma.
Theorem [4]:

The set ±k k
es kλ

∞{ } =1
 is the Schauder basis for 

Ω(u,p).
Proof:
Let f∈ Ω(u,p), where f f s a ek

s
k

k: ( ) = =

∞∑ 
1

=

k k 1
a k



=∑ ′ δ  where δ λ
k

ss e k( ) = ±k  and a
a

±
k

' k

k

=  

fork=1,2,3. Then, for a given ε>0, there exists a 

positive integer `n’ such that a

±

k

k

p

k n= +

∞∑ <
1



But then 
n ' '

k k k 1 k n 1
lim a  lim a  
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p

k p kn n p
f 
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Thus '
k  k 1

a kf  
=

= ∑  ⇒ ( ) ( )'
k  k 1

a skf s  
=

= ∑  

 (2.2)
Now, we will show the uniqueness of the above 
representation (2.2). If possible, let us assume 

'
k  k 1

 b kf  
=

= ∑  then

n ' '
k  kk 1

n n' '
k  k  k 1 k 1

(a b )  

 a  b  

p
k p

p p
k k pp

f f



 

=

= =

−

− + −

≤∑
∑ ∑

→0 as n→∞.

Therefore, 
pn ' '

k  kk 1
a b 0 as n .

=
− → →∑

Consequently, ' '
k  ka b=  for each k. Hence, ak=bk 

for each k.
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