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ABSTRACT
This article discusses Bayesian and non-Bayesian estimation problem of the unknown parameter for the 
inverse Rayleigh distribution based on the lower record values. Maximum likelihood estimators of the 
unknown parameters were obtained. Furthermore, Bayes estimator has been developed under squared 
error and zero one loss functions. We discuss also statistical properties and estimation of power-transmuted 
inverse Rayleigh distribution (EIRD). We introduce the transmuted modified inverse Rayleigh distribution 
using quadratic rank transmutation map, which extends the modified inverse Rayleigh distribution. We 
introduce a generalization of the inverse Rayleigh distribution known as EIRD which extends a more 
flexible distribution for modeling life data. Some statistical properties of the EIRD are investigated, such 
as mode, quantiles, moments, reliability, and hazard function. We describe different methods of parametric 
estimations of EIRD discussed by using maximum likelihood estimators, percentile-based estimators, least 
squares estimators, and weighted least squares estimators and compare those estimates using extensive 
numerical simulations. The new two-scale parameters generalized distribution were studies with its 
distribution and density functions, besides that the basic properties such as survival, hazard, cumulative 
hazard, quantile function, skewness, and Kurtosis functions were established and derived. To estimate the 
model parameters, maximum likelihood, and rank set sampling estimation methods were applied with real-
life data. We have introduced weighted inverse Rayleigh (WIR) distribution and investigated its different 
statistical properties. Expressions for the Mode and entropy have also been derived. A comprehensive 
account of the mathematical properties of the modified inverse Rayleigh distribution including estimation 
and simulation with its reliability behavior is discussed.

Key words: Bayesian estimation, Bayesian prediction transmuted inverse Rayleigh, exponential 
Rayleigh distribution, inverse Rayleigh distribution, lower record values, maximum likelihood, 
maximum likelihood, mean residual life function, modified inverse Rayleigh distribution, modified 
inverse Rayleigh distribution, moments, order statistics, percentiles
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INTRODUCTION

The inverse Rayleigh distribution has many 
applications in the reliability studies. Voda (1972) 
mentioned that the distribution of lifetimes of several 
types of experimental units can be approximated by 
the inverse Rayleigh distribution. The probability 
density function of the inverse Rayleigh distribution 
with scale parameter θ is given by:
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The corresponding cumulative distribution 
function (cdf) is,
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Gharraph (1993) derived five measures of 
location for the inverse Rayleigh distribution. 
These measures are the mean, harmonic mean, 
geometric mean, mode, and the median. He also 
estimated the unknown parameter using different 
methods of estimation. A comparison of these 
estimators was discussed numerically in term 
of their bias and root mean square error (MSE). 
Abdel-Monem (2003) developed some estimation 
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and prediction results for the inverse Rayleigh 
distribution. El-Helbawy and Abd-El-Monem 
(2005) obtained Bayesian estimators of the 
parameter of the inverse Rayleigh distribution 
under four loss functions. Bayesian of one and two 
sample predictions is also developed including 
point predictions and prediction interval.
Soliman et al. (2010) introduce how record values 
can be used to develop a methodology to construct 
and compute Bayesian and non-Bayesian 
estimation and prediction. The lower record values 
from inverse Rayleigh population based on a set 
of lower record values will be considered.
Leao et al. (2013) are studied the beta generalized 
distribution based on the IR distribution, called the 
beta inverse Rayleigh (BIR) distribution. The BIR 
distribution is a special case of the beta Fréchet 
(BF) distribution, The BIR probability density 
function (pdf) can be expressed as (for x > 0):
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The BIR random variable X is denoted by X ∼ 
BIR (a, b, and θ). The parameters a and b affect 
the skewness of X by changing the relative tail 
weights. Simulating the BIR random variable is 
relatively simple. Let Y be a random variable 
distributed according to the usual beta distribution 
with parameters a and b. Thus, by means of the 
inverse transformation method, the random 

variable X is given by X
log

= − θ
( )y

.

Khan et al. (2014) introduce that the modified inverse 
Rayleigh (MIR) distribution is the special case of 
the modified inverse Weibull (MIW) distribution 
proposed by Khan et al. (2012) and studied its 
theoretical properties. The modified inverse 
Rayleigh distribution approaches to the inverse 
Rayleigh and inverse exponential distributions 
when its parameters change. The modified inverse 
Rayleigh distribution is very useful lifetime model 
which can be used for analyzing lifetime data. In 
this research, the properties of the modified inverse 
Rayleigh distribution are discussed.
The cdf of the inverse Rayleigh distribution is 
given by:

G x exp
x

;θ θ( ) = − 















1
2

 (1.4)

The probability density function (pdf) 
corresponding
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Here, θ is the scale parameter. The behavior of 
instantaneous failure rate of the inverse Rayleigh 
distribution has increasing and decreasing failure 
rate patterns for lifetime data
Khan et al. (2015) studied the modified inverse 
Rayleigh (MIR) distribution and discussed 
its theoretical properties. The cdf of the MIR 
distribution is given by:
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where α > 0 and β > 0 are the scale parameters. 
The density function corresponding to (1.6) is
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Fatima et al. (2017) introduce that the pdf of 
Weighted distribution of X can be defined as:
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Rao et al. (2019) are shown that the cumulative 
density function (CDF) of the exponentiated 
inverse Rayleigh distribution (EIRD) is given by:
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where σ is the scale parameter and is the shape 
parameter. The probability density function (PDF) 
of EIRD is:

f x
x

e e xx x( ) = −










≥ > >
−





−





−

2
1 0 0 0

2

3

12 2

ασ σ α
σ σ

α

; , ,  

 (1.10)



Abd-El-Monem: Review on the Inverse Rayleigh Distribution

AJMS/Jan-Mar-2022/Vol 6/Issue 1 3

The TIR distribution is a generalization of the IR 
distribution using the quadratic rank transmutation 
map (Ahmed et al., 2014 and Hassan et al., 2020).
The cdf of the TIR distribution is given by:

F y e e yTIR
y y
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Mohammed et al. (2021) are shown that the 
random variable Y=1/X is following the inverse 
exponential Rayleigh distribution (IERD) with 
two non-negative shape parameters (γ and β), 
the cdf, pdf, and surveil (reliability) function are, 
respectively, give:
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ESTIMATION

Soliman et al. (2010) are given that the rth moment 
about origin for (m +1) lower record values from 
inverse Rayleigh distribution is given as follows:
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the logarithm of the likelihood function:
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Differentiate both side of equation (2.2) with 
respect to the parameter θ and equating with zero, 
then the maximum likelihood estimate of θ under 
lower record value, say ̂ ,

( ) 21ˆ
mm r = +  (2.3)

The problem of obtaining Bayesian estimators 
for the scale parameter from the inverse Rayleigh 

distribution.
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The prior knowledge which is adequately 
represented by the natural conjugate prior 
distribution under two loss functions will be 
developed. Consider the following informative 
prior distribution for the scale parameter θ:

π1 (θ)=ae–aθ (2.4)

The posterior probability density function is 
obtained by combining the likelihood given in 
equation (2.4) and the posterior probability density 
π1 (θ|r), then;
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The Bayesian estimator of θ under squared error 
loss function is the posterior mean and is given by:

θ
1

2= +m
A

 (2.6)

The Bayes estimator of θ with respect to zero one 
loss function is the posterior mode which is given 
by
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Leao et al. (2013) are written the rth moment of X as:
E(Xr) = θr/2/B(a, b) Sr(a, b), r<2 (2.8)
Where,
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Khan (2014) is shown the moment and moment 
generating function of the distribution as:
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the moment generating function of Mx (t) is given 
as follows:
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The likelihood function of (1.5) is given by:
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By taking logarithm of (2.12), we find the log-
likelihood function, differentiating with respect to 
α, θ and then equating it to zero, we obtain the 
estimating equations.
Khan et al. (2015) are given that the kth moment of X has 
the TMIR (x; α, β, and λ) with |λ| ≤ 1, then is given by:
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Consider the random samples x1, x2,…, xn consisting 
of n observations from the TMIR distribution and 
Θ = (α, β, λ) T be the parameter vector. The log 
likelihood function of (1.7) is given by:
It is more convenient to use quasi-Newton 
algorithm to numerically maximize the log-
likelihood function given in above equation to 
yield the ML estimators 

ˆ, , ˆˆ and   , respectively. 
For finding the interval estimation and testing the 
hypothesis of the subject model.
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Fatima et al. (2017) are shown that the rth moment 
of a continuous random variable X is given as 
follow:
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Then moment generating function of X denoted 
by Mx (t) is given by:
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We make use of the method of maximum likelihood 
estimation (MLE):
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By taking logarithm and differentiating equation 
and equate to zero, we get ̂ .
Rao et al. (2019) are shown moments and moment 
generating function. The rth moment about origin 
is given by:
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The moment generating function is given by:
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MLE method is mostly used in many writings. The 
MLE satisfies many properties of good estimator.
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Equation above can be solved by iterative 
procedure like Newton Raphson method to obtain 
the ML estimator.
Hassan et al. (2020) are shown the moments under 
various characteristics of a frequency distribution. 
They have been applied to obtain mean and 
variance, in addition to some measures, such as 
skewness and kurtosis. The rth moment of X has 
the PTIR distribution and is derived using (1.3) as 
follows:
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The ML estimator procedure is considered to 
estimate the population parameters of the PTIR 
distribution. The likelihood function is given by:
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Then ML estimators of the parameters θλ and β 
denoted by  ˆ, and    are determined by solving 
numerically the non-linear equations for first 
differentiation after setting them equal to zeros 
simultaneously.
Mohammed et al. (2021) are shown the general 
form of rth non-central moment. In the case of 
finding the moment of IERD and because of the 
complexity involved in the integration form, 
specialist mathematics models are used such as 
Tylor’s series expansion and Gamma function.
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MLE method is given by:
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To obtain the results that represent the parameters 
estimated by the MLE method, numerical methods 
are obtained.

SIMULATION STUDY

In this section, a simulation study is presented to 
illustrate the application of the various theoretical 
results developed in the previous sections.
Abdel-Monem (2003) is used the cdf as the 
method of simulation studies. Using Mathematica 
9 programing to obtain some tables that summarize 
the results of a simulation study from sample size 
n = 20, 30, 40, and 50 from the IRD with θ = 5, 
10, and 15.
The mle ̂  and the estimators 1 2 3 4 5, ,ˆ ˆ ˆ ˆ , ˆ,      
present the generalized samples of sizes n = 20, 
30, 40, and 50 from the IRD. It estimates decrease 
as the sample sizes increase for selected sets of 
parameters.
El-Helbawy et al. (2005) obtained Bayesian 
estimators of the parameter of the inverse Rayleigh 
distribution under four loss functions. Bayesian of 
one and two sample predictions is also developed 
including point predictions and prediction interval 
using Matlab 7. It is seen from tables that the 
estimators of θ (for = 0.5 and 2) as increases and 
the results n increases for complete samples are 
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slightly better than the corresponding results for 
Type II censored samples.[1-10]

Soliman et al. (2010) are shown that numerical 
results of the Bayesian predictive interval for 
several values of different prior parameters will 
be obtained. The calculations are carried out 
according to the following steps: (1) For given 
values of the inverse Rayleigh parameters θ 
generate a random variable X from the inverse 
Rayleigh distribution (1.1) and selected the first 
10 records. (2) Consider the first six records as 
the observed upper records (m=5), while the last 
six records as the unobserved records, which are 
to be predicted. Using Mathcad (2001) program 
to obtain the 95% equal tail Bayesian prediction 
interval for the sth upper record values for m = 5 
and s = 6 and for several different values of the 
prior parameters (a = 0.5, 1, 2, 3, 5, and 7) and 
Tables 1 and 2 contained the results which show 
(i) the values of the prior parameters a, (ii) the 95% 
Bayesian prediction interval for the sth records, 
and (iii) the lengths of the prediction interval.
Liao et al. (2013) are studied the beta inverse 

Rayleigh distribution as a generalization of the 
inverse Rayleigh distribution. They are provided a 
better foundation for some mathematical properties 
for this distribution, including the derivation of the 
hazard rate function, moments, quantile measures, 
mean deviations, entropy measures, and order 
statistics. The model parameters are estimated by 
maximum likelihood. An application of the BIR 
distribution to a real data set indicates that this 
distribution outperforms both the exponentiated 
inverse Rayleigh and inverse Rayleigh distributions.
Khan (2014) introduced the MIR distribution, 
which is an extension of the IR distribution. The new 
parameter provides more flexibility in modeling 
reliability data. Some of its properties are discussed 
illustrating the usefulness of the MIR distribution 
to real data using MLE. The likelihood ratio test 
concludes that the MIR distribution provides 
consistent result than the IR and IE distributions.
Khan et al. (2015) proposed a new distribution, 
named the TMIR distribution, which is an 
extension of the MIR distribution. The TMIR 
distribution provides better results than the MIR, 

Table 1: The Bayesian estimators of θ under three loss functions using complete samples.
n ns Mean of the estimator and v ( θ̂ ) 

under the squared error loss function
Mean of the estimator and v( θ̂ ) 
under the zero-one loss function

Mean of the estimator and v( θ̂ ) 
under the LINEX loss function

M  
( θ̂ 1)

V ( θ̂ 1) M ( θ̂ 2) V ( θ̂ 2) M ( θ̂ 1) V ( θ̂ 1) M ( θ̂ 2) V ( θ̂ 2) M ( θ̂ 1) V ( θ̂ 1) M ( θ̂ 2) V ( θ̂ 2)

50 100 0.5121 0.0046 0.0484 0.0733 0.5019 0.0044 2.0074 0.0704 0.5095 0.0045 2.0069 0.0676

500 0.5112 0.0058 2.0449 0.0932 0.5010 0.0056 2.0040 0.0895 0.5086 0.0057 2.0034 0.0858

1000 0.5089 0.0052 2.0355 0.0825 0.4987 0.0050 1.9948 0.0792 0.5063 0.0051 1.9944 0.0760

5000 0.5109 0.0053 2.0436 0.0840 0.5007 0.0050 2.0027 0.0807 0.5083 0.0051 2.0022 0.0773

100 100 0.5013 0.0023 2.0052 0.0372 0.4963 0.0023 1.9852 0.0365 0.5000 0.0023 1.9852 0.0357

500 0.5059 0.0024 2.0238 0.0390 0.5009 0.0024 2.0035 0.0382 0.5047 0.0024 2.0034 0.0374

1000 0.5025 0.0024 2.0099 0.0386 0.4975 0.0024 1.9898 0.0379 0.5012 0.0024 1.9898 0.0371

5000 0.5050 0.0026 2.0200 0.0409 0.5000 0.0025 1.9998 0.0401 0.5037 0.0025 1.9997 0.0393

200 100 0.5032 0.0015 2.0126 0.0247 0.5006 0.0015 2.0026 0.0245 0.5025 0.0015 2.0025 0.0242

500 0.5026 0.0013 2.0106 0.0121 0.5001 0.0013 2.0005 0.0209 0.5020 0.0013 2.005 0.0207

1000 0.5028 0.0013 2.0114 0.0203 0.5003 0.0013 2.0013 0.0201 0.5022 0.0013 2.0013 0.0199

5000 0.5026 0.0013 2.0105 0.0207 0.5001 0.0013 2.0005 0.0205 0.5020 0.0013 2.004 0.0203

300 100 0.5001 8.7558e-004 2.0006 0.0140 0.4985 8.6975e-004 1.9939 0.0139 0.4997 8.7262e-004 1.9939 0.0138

500 0.5026 8.7771e-004 2.0105 0.0110 0.5010 8.7187e-004 2.0038 0.0139 0.5022 8.7477e-004 2.0038 0.0139

1000 0.5019 8.3502e-004 2.0076 0.0134 0.5002 8.2946e-004 2.0009 0.0133 0.5015 8.7222e-004 2.0009 0.0132

5000 0.5012 7.9010e-004 2.0049 0.0126 0.4996 7.8484e-004 1.9983 0.0126 0.5008 7.87464-001 1.9983 0.0125

400 100 0.5022 4.8488e-004 2.0086 0.0078 0.5009 4.8246e-004 2.0036 0.0077 0.5018 4.8366e-004 2.0036 0.0077

500 0.5007 5.7110e-004 2.0028 0.0092 0.4994 5.7422e-004 1.9978 0.0092 0.5004 5.7565e-004 1.9978 0.0091

1000 0.5008 5.6495e-004 2.0031 0.0090 0.4995 5.6212e-004 1.9981 0.0090 0.5005 5.6353e-004 1.9981 0.0089

5000 0.5018 6.4561e-004 2.0072 0.0103 0.5005 6.4239e-004 2.0022 0.0103 0.5015 6.4399e-004 2.0022 0.0102

500 100 0.5023 5.5978e-004 2.0093 0.0090 0.5013 5.5755e-004 2.0053 0.0089 0.5021 5.5866e-004 2.0063 0.0089

500 0.5014 4.8046e-004 2.0055 0.0077 0.5004 4.7854e-004 2.0015 0.0077 0.5011 4.7949e-004 2.0015 0.0076

1000 0.5011 5.0161e-004 2.0045 0.0080 0.5001 4.9960e-004 2.0005 0.0080 0.5009 5.0060e-004 2.0005 0.0080

5000 0.5008 5.1174e-004 2.0031 0.0082 0.4998 5.0970e-004 1.9991 0.0082 0.5005 5.1071e-004 1.9991 0.0081
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TIR, and IR distributions. In this model, the new 
parameter λ provides more flexibility in modeling 
reliability data. They derived the quantile function, 
moments, moment generating function, entropies, 
mean deviation, Bonferroni, and Lorenz curves. 
They derived the Sth moment of rth order statistics 
and the kth moment of rth median order statistics. 
They discussed the MLE and obtained the fisher 
information matrix. The usefulness of the new 
model is illustrated in an application to real data 
using MLE. They hoped that the proposed model 
may attract wider application in the analysis of 
reliability data.
Fatima et al. (2017) introduced weighted inverse 
Rayleigh (WIR) distribution, which acts as a 
generalization to so many distributions, namely, 
IRD, LBIRD, WRD, LBRD, and RD. After 
introducing WIRD, we investigated its different 
mathematical properties. Two real data sets have 
been considered to make comparison between 
special cases of WIRD in terms of fitting. After 
the fitting of WIRD and its special cases to the 

data sets considered, WIRD possesses minimum 
values of Akaike information criterion (AIC), 
corrected AIC, and Bayesian information criterion 
on its fitting, to two real life data sets. Therefore, 
we can conclude that the WIRD will be treated as a 
best fitted distribution to the data sets as compared 
to its other special cases.
Rao et al. (2019) proposed Monte Carlo 
simulation study. They are conducted to evaluate 
the performance of different simulation method 
for estimating unknown parameters of EIRD. 
The performance of the different estimators is 
evaluated in terms of MSE. The simulation is 
conducted using R-software, 10,000 random 
samples of EIRD were generated with values of 
n = (20, 40, 50, and 100) while choosing (α, σ) = 
(0.5, 1), (1.5, 1), (2, 1), (2.5, 1), (0.5, 2), (1.5, 2), 
(2, 2), and (2.5, 2). Average bias and MSE values 
obtained by the method of MLE, LSE, WLSE, 
and PCE. EIRD which is derived from this study 
performs well; from the diagram of the PDF, it 
can be shown that the distribution is positively 

Table 2: The mean of the Baysian estimator of θ under three loss function using a type II censored sample with 
m=0.98(n)
n m ns Mean of the estimator and v( θ̂ ) 

under the squared error loss function
Mean of the estimator and v( θ̂ ) 
under the zero-one loss function

Mean of the estimator and v( θ̂ ) 
under the LINEX loss function

M  
( θ̂ 1)

V ( θ̂ 1) M ( θ̂ 2) V ( θ̂ 2) M ( θ̂ 1) V ( θ̂ 1) M 
 ( θ̂ 2)

V  
( θ̂ 2)

M  
( θ̂ 1)

V ( θ̂ 1) M  
( θ̂ 2)

V  
( θ̂ 2)

50 49 100 0.5017 0.0044 2.0067 0.0704 0.4914 0.0042 1.9657 0.0675 0.4991 0.0043 0.9600 0.649

500 0.5033 0.0052 2.0132 0.0830 0.4930 0.0050 1.9721 0.0796 0.5007 0.0051 1.9721 0.0763

1000 0.5005 0.0049 2.0022 0.0777 0.4903 0.0047 1.9613 0.0746 0.4980 0.0048 1.9616 0.0716

5000 0.4989 0.0049 1.9955 0.0788 0.1887 0.0047 1.9548 0.0756 0.4963 0.0048 1.9552 0.0726

100 98 100 0.5037 0.0029 2.0146 0.0465 0.4985 0.0028 1.9941 0.0455 0.5024 0.0029 1.9940 0.0446

500 0.4987 0.0028 1.9946 0.0444 0.4936 0.0027 1.9743 0.0435 0.4974 0.0027 1.9744 0.0426

1000 0.4926 0.0023 1.9703 0.0371 0.4876 0.0023 1.9502 0.0364 0.4913 0.0023 1.9506 0.0357

5000 0.4944 0.0025 1.9777 0.0407 0.4849 0.0025 1.9575 0.0399 0.4932 0.0025 1.9578 0.0391

200 196 100 0.4889 0.0012 1.9558 0.0191 0.4865 0.0012 1.9458 0.0189 0.4883 0.0012 1.9461 0.0187

500 0.4932 0.0011 1.9729 0.0183 0.4907 0.0011 1.9629 0.0181 0.4926 0.0011 1.9630 0.0179

1000 0.4919 0.0012 1.9674 0.0187 0.4894 0.0012 1.9574 0.0185 0.4912 0.0012 1.9576 0.0183

5000 0.4931 0.0013 1.9724 0.0202 0.4906 0.0012 1.9623 0.0200 0.4925 0.0013 1.9625 0.0198

300 294 100 0.4932 7.5342e-004 1.9729 0.0121 0.4916 7.4830e-004 1.9662 0.0120 0.4928 7.5089e-004 1.9663 0.0119

500 0.4930 8.5151e-004 1.9719 0.0136 0.4913 8.4572e-004 1.9652 0.0135 0.4926 8.4864e-004 1.9653 0.0134

1000 0.4932 8.0078e-004 1.9730 0.0128 0.4916 7.9535e-004 1.9663 0.0127 0.4928 7.9809e-004 1.9664 0.0126

5000 0.4922 7.8490e-004 1.9688 0.0126 0.4905 7.7957e-004 1.9621 0.0125 0.4918 7.8226e-004 1.9622 0.0124

400 392 100 0.4885 6.3058e-004 1.9539 0.0100 0.4872 6.2736e-004 1.9490 0.0100 0.4882 6.2901e-004 1.9491 0.0100

500 0.4924 5.8017e-004 1.9697 0.0093 0.4912 5.7721e-004 1.9647 0.0092 0.4921 5.7871e-004 1.9647 0.0092

1000 0.4899 5.9112e-004 1.9596 0.0095 0.4887 5.8810e-004 1.9546 0.0049 0.4896 5.8963e-004 1.9547 0.0049

5000 0.4906 6.1077e-004 1.9624 0.0098 0.4894 6.0766e-004 1.9574 0.0097 0.4903 6.0929e-004 1.9575 0.0097

500 490 100 0.4902 4.8571e-004 1.9608 0.0078 0.4892 4.8373e-004 1.9568 0.0077 0.4900 4.8473e-004 1.9569 0.0077

500 0.4937 4.9643e-004 1.9747 0.0079 0.4927 4.9441e-004 1.9707 0.0079 0.4934 4.9543e-004 1.9707 0.0079

1000 0.4890 5.0147e-004 1.9558 0.0080 0.4880 4.9943e-004 1.9518 0.0080 0.4887 5.0047e-004 1.9519 0.0080

5000 0.4909 4.8196e-004 1.9637 0.0077 0.4899 4.7999e-004 1.9597 0.0077 0.4907 4.8099e-004 1.9598 0.0076
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skewed, and the CDF shows the increasing 
pattern as other distributions. Furthermore, using 
reliability function, the distribution can be used 
in lifetime studies since reliability graph tends 
to decrease as the time increases. The hazard 
function shows the upside-down bath-tub curve 
shape. The unique characteristic of the distribution 
has only one moment, and kurtosis and skewness 
are found in terms of quantile. Four methods of 
estimation were used in parameter estimation; the 
methods are maximum likelihood, least square, 
weighted least square, and percentile estimation. 
From the simulation study, it is observed that 
the method of maximum likelihood is the best 
compared to other methods since it has minimum 
value of MSE. Furthermore, findings revile that 
all methods are consistent since the values of bias 
and MSE decrease as sample size increases. The 
data set of coating weights for March 2018 from 
ALAF industry is used to study the performance 
of the proposed distribution. It is shown that 
EIRD is better performed more than the existing 
distributions, namely: IRD, RD, IWD, and GIED.
Hassan et al. (2020) is performed a numerical 
study to evaluate and compare the performance of 
the estimates with respect to their absolute biases 
(ABs) and MSEs for different sample sizes and 
for different parameter values. The numerical 
procedures are described as follows: Step (1): 
A random sample X1,…, Xn of sizes n = 10, 20, 
30, and 100 is selected. These random samples are 
generated from the PTIR distribution.
Step (2): Four different set values of the parameters 
are selected as: Set 1 = (θ = 1.0, λ = 0.5, 
and β = 0.5), Set 2 = (θ = 1.0, λ = 0.5, and β = 1.5), 
Set 3 = (θ = 1.0, λ = 0.5, and β = 2), and Set 
4 = (θ = 0.5, λ = –0.7, and β = 1). Step (3): The ML, 
LS, and PR estimates of θ, λ, and β are computed 
for each set of parameters and for each sample size. 
Step (4): Steps from 1 to 3 are repeated 5000 times 
for each sample size and for selected sets of 
parameters. Then, the ABs and MSEs of the ML, 
LS, and PR estimates are computed. The following 
conclusions can be observed on the properties of 
estimated parameters. The MSEs of the ML, LS, 
and PR estimates decrease as the sample sizes 
increase for selected sets of parameters. The MSEs 
for the ML estimates of θλ and β take the smallest 
values compared to the MSEs of the LS and PR 
estimates in almost all of the cases. The ABs of 
the ML estimates are smaller than the ABs of the 
PR and LS estimates in almost all of the cases 

especially at small and moderate sample sizes. The 
ABs and MSEs of the ML, PR, and LS estimates of 
β are smaller than the corresponding estimates of θ 
and λ in almost all of the cases.
Mohammed et al., 2021 adopted and studied a new 
approach to mixing the distributions in addition to 
the inverse distribution approach. The new two-
parameter lifetime distribution is called IERD. 
The statistical properties such as probability 
density, cumulative, survival, hazard, quantile, 
and moment functions were provided by this study. 
The new model parameters were estimated using 
maximum likelihood and ranked set sampling 
methods with simulation studies of different sizes 
to show the general behavior of the new model in 
terms of flexibility and effectiveness.[11-15]

CONCLUSION

 We proposed a new distribution, named the 
TMIR distribution, which is an extension of 
the MIR distribution. The TMIR distribution 
provides better results than the MIR, TIR and IR 
distributions. In this model the new parameter λ 
provides more flexibility in modeling reliability 
data. We derive the quantile function, moments, 
moment generating function, entropies, mean 
deviation, Bonferroni and Lorenz curves. We also 
derive the Sth moment of rth order statistics and 
the kth moment of rth median order statistics. 
We discuss the maximum likelihood estimation 
and obtain the fisher information matrix. The 
usefulness of the new model is illustrated in an 
application to real data using MLE. We hope that 
the proposed model may attract wider application 
in the analysis of reliability data.
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