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ABSTRACT
The linear multi-step method, x x h f kn k
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1α β β ; ,  a numerical method for solving the 

initial value problem x f t x x t x
' = ( ) ( ) =, ,

0 0
 is hereby analytically reviewed and observations show that 

the linear multistep method is a typical Picard’s fixed point iterative formula with a differential operator 
endowed with some numerical reformulations instead of the usual integral operator as in the traditional 
Picard’s method. The study also shows that any given linear multistep iterative method will be convergent 
to a fixed point if and only if it is consistent and stable. This was adequately illustrated with an example 
as is contained in section three of this work.
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INTRODUCTION

Consider the differential equation

 x f t x x t x= ( ) ( ) = …, ;
0 0

 (1.1)

A computational method for determining the 
sequence{xn} that takes the form of a linear 
relationship between xn+j, fn+j;=0,1,…k is called 
the linear multistep method of step number k or 
k– step method;

 f f t x f t x tn j n j n j n j n j+ + + + += ( ) = ( )( ), , .

The general linear multistep method[1-4] may be 
given thus –

 x x h fn k
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α β β � (1.2)

Where αj and βj are constants, αk≠0 and not 
both α0 and β0 are zeros. We may without loss of 

generality, and for the avoidance of arbitrariness 
set αk=1 throughout.
Suppose in (1.2), βk=0 then it is called an 
explicit method since it yields the current value 
xn+k directly in terms ofxn+j, fn+j; j = 0,1,…,k–1 
which by the stage of computation have already 
been calculated.[5-8] If, however, Bk≠0, then (1.2) 
is called an implicit method which requires the 
solution at each stage of the computation of the 
equation

 x h f t x gn k k n k n k+ + += + + …β ( ,  (1.3)

Were ɡ is a known function of the previously 
calculated values, xn+j, fn+j; j=0,1,…,k–1
If the lipschittz condition is applied onfand 
m=lh|Bk|, we observe that the unique solution 
exists as seen in the theorem (3.1) and that the 
unique solution for xn+k exists as well where the 
computational iteration converges to xn+k if

 



h B i e h
h ²

k

k

< <. .
1

We, therefore, see that;[9-12] implicit methods call 
for a substantially greater deal of computational 
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efforts than the explicit method whereas, on the 
other hands, for a given step number, implicit 
methods can be made more accurate than the 
explicit ones. Moreover, they have favorable 
stability properties as will be seen in Section 3.

MAIN RESULT ON LINEAR MULTI-
STEPITERATIVE METHODS:

Analytical study of the linear multistep methods 
has revealed the following facts:-
a. That the domain of existence of solution of 

the linear multistep methods is the complete 
metric space.

b. That the solution of the linear multistep method 
converges in the complete metric space.

c. That the initial value problem x’=f(t,x);x(t0)=x0 
solvable by the linear multistep in the complete 
metric space is a continuous function.

d. That the linear multistep method satisfies the 
conditions of the Banach contraction mapping 
principle.

e. That the linear multistep method is exactly the 
Picard’s iterative method with a differential 
operator instead of the usual integral operator.

Theorem 2.1: Let X be a complete metric space 
and let R be a region in (t,x) plane containing(t0,x0) 
for x0,x ∈ X. Suppose, given

 x f t x x t x= ( ) ( ) = …, ;
0 0

 (2.0)

A differential equation where f(t,x) is continuous. 
If the map f in (2.1) is Lipschitzian and with 
constant K<1, then the initial value problem (2.1) 
by the linear multistep method has a unique fixed 
point.
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With a two-step predictor-corrector method.

 i e Thepredictor x x h fj

j

j

n

j j

j

n

j j. . : ( )

+
= =

= +∑ ∑1

0 0

α β

 Thecorrector x x h fj

j

j

n

j j

j

j

n

j j: ( ) ( )

+
=

+
=

+ += +∑ ∑1

0

1

0

1 1α β
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h ²

m h ²
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Proof
Let x1 = f(x0)

 x f x f f x f x2 1 0

2

0= ( ) = ( )( ) = ( )

 x f x f f x f x
3 2

2

0

3

0
= ( ) = ( )( ) = ( )

 x f x f f x f x
n n

n n= ( ) = ( )( ) = ( )−
−

1

1

0 0

x f x f f x f x
n k n k

n k n k

+ + −
+ − += ( ) = ( )( ) = ( )…1

1

0 0
 (2.1)

We have constructed a sequence {xn}n=0 in (X,ρ). 
We shall prove that this sequence is Cauchy.
First, we compute

ρ ρx x f x f xn k n k n k n k+ + + + + +( ) =, ( ( ), ( )1 1  Using (2.1)

≤ Kρ(xn+k-2,xn+k-1) Since is a contraction

=Kρ(fn+k-2,fn+k-1) Using (2.1)

≤K[Kρ(xn+k-2,xn+k-1)] Since is a contraction

=K2 ρ(xn+k-2,xn+k-1)

Kn+k ρ(x0,x1)

i e K x x K x x
n k n k

n k
. . , ,ρ ρ+ + +

+( ) ≤ ( )…1 0 1
 (2.2)

We can now show that{xn+k}n=0 is Cauchy.
Let m+k > n + k. Then

ρ ρ ρx x x x x x

x x

n k m k n k m k n k m k

n k m k

+ + + + + − + −

+ − +

( ) ≤ ( )+ ( )
+…+ ( )

, , ,

,

1 2

1

≤ ( )+ ( )
+…+ ( )

+ + −

+ −

K x x K x x

K x x

n k n k

n k

ρ ρ

ρ
0 1

1

0 1

1

0 1

, ,

, Using (2.2)

= ( ) + + +…+ + +…+ + − +K x x k k k kn k n m n kρ 0 1

2 11, ( )

Since the series on the right hand side is a geometric 
progression with common ratio <1, it sum to 

infinity is 1

1− k
. Hene, we have from above that

ρ ρx x k x x
k

as n k cek

n m

n k
, ,

sin

( ) ≤ ( )
−






→

− → ∞ <

−
0 1

1

1
0

1

Hence, the sequence {xn+k}n=0 is a Cauchy sequence 
in X and since X is complete,

{ }xn k n+ =
∞
0  Converges to a point in X.]

 Let xn+k→x* as h→∞… (2.3)

Since f is a contraction and hence is continuous it 
follows from (2.3) that
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f(xn+k)→f(x*) as n→∞. But f(xn+k)=xn+k+1 from 
(2.2). So
 xn+k+1=f(xn+k)=f(x*)… (2.4)
However, limits are unique in a metric space, so 
from (2.3) and (2.4), we obtain that
 f(x*)=x*… (2.5)
Hence, f has a unique fixed point in X. We shall 
now prove that this fixed point is unique. Suppose 
for contradiction, there exists y*∈X such that
 y*=x* and (y*)=y*… (2.6)
Then, from (2.5) and (2.6)

ρ ρ ρx y f x f y k x y* * * * * *, , ( , )( ) = ( ) ( )( ) ≤
So that
(k – 1) ρ(x*,y*) ≥ 0 and ρ(x*,y*)= 0.
We can divide by it to get k–1 ≥ 0, that is, k ≥ 1 
which is a contradiction.
Hence x* = y* and the fixed point is unique.
Therefore,

x x h f a t nn k
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j n j
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j n j n+
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+= + ≤ ≤∑ ∑
0

1

0

α β ;

Is the linear multistep fixed point iterative formular 
for the initial value problem

 x f t x ;x t x= ( ) ( ) =,
0 0

Of the ordinary differential type.
Finally, to be sufficiently sure, we also show that
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Satisfies the lipschitz condition.
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Hence, x*=xn+k is Lipschitizian and is a continuous 
map with the above fixed point.
Also in the same pattern, iterative methods for the 
respective linear multistep methods are as follows:
A. The Explicit Methods are:-
i. Euler:
 xn+1=xn+hfn

ii. The midpoints method:
 xn+2=xn+2hfn+1

iii. Milne’s method:

 x x
h

f f f
n n n n n+ − − −= + + +[ ]1 3 2 1

4

3
2 2

iv. Adam’s method:

x x
h

f f f f
n n n n n n+ − − −= + − + −[ ]1 1 2 3

24
55 59 35 9

v. The Generalized predictor method:

 x x h fj

j
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n

j j+
= =

= +∑ ∑1

0 1

( ) α β

B. The Implicit Methods are:-
i. Trapezoidal method:

 x x
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ii. Simpson’s method:
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iii. Simpson’s method:

 x x
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2 1 1
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4( ) ( )

iv. Adams Moulton’s method

 x x
h
f f f fn

j

n n n n n+
+

+ − −= + + − +[ ]2

1

1 1 2
3
9 19 5( )

v. Milne’s corrector method:

 x x
h
f f f nn

j

n n n n

j

+
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− − += + + +  =1

1

2 1 1
3

4 1( ) ( ) ;

vi. The Generalized corrector method
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C: The Generalized Iterative (Corrector – 
Predictor) Methods are

 x x hj
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Here, x Xj

j

+
+ ∈1

1( )  is the corrector points to be 

determined for all j ≥ 0 while x Xj

j

+
+ ∈1

1( )  is 

predetermined before x Xj

j

+
+ ∈1

1( ) . While the 

iterations are alternatively implement one after the 
other starting first with the predictor.
Note: The generalized compact form of C1 and C2 
is as follows

x x h fn k
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Convergence Analysis

Given the linear multistep method

x x h F a t nn k
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0
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α β ;  (2.7)

Theorem 2.2:[13-16]

Let xn+j=x(tn+j); j = 0,1,2,…,k–1 denote its 
numerical solution

 T x t h f t xn k

j

k

j n j

j

k

j n j n j+
=

−

+
=

+ += ( )− ( )∑ ∑
0

1

0

α β ( , )

The local truncation error and

τn k n k
h
T x+ += 1 ( )

Then, the linear multistep method (3.1) is said to 
be consistent if
τ(h)=max|Tn+k (x)|→0 as h→0 and ∑ (h) =0(hm)
For some m ≥ 1 or equivalently (1.3.2) is said to 
be consistent if

 
j

k

j

j

k

j

j

jj
= = =
∑ ∑ ∑+ = …
0 0 1

1α α β;  (2.8)

Proof:
If the numerical solution of a given linear multistep 
method is

 x x t j kn j n j+ += = … − …( ), , , , ,0 1 2 1  (2.9)

Moreover, the local truncation error is

T x t h f t xn k
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+ += ( )− ( )…∑ ∑
0

1

0

α β ,  (2.10)

 With τ
n k n k

x
h
T x+ +( ) = ( ) …1

,  (2.11)

We want to prove that the linear multistep method

x x h f a t nn k
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α β ,  (2.12)

Is consistent if

τ h T x as hn k( ) = → → …+max ( ) 0 0  (2.13)

And
τ(h)= 0(hm) For some m ≥ 1… (2.14)

If x ̅n+j denotes the numerical solution with the 
above exact values (1.2), then (2.14) yields

x x h f t x h f t xn k
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j n j k n k n k
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n j n j+
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=
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α β β, ,

 (2.15)
Applying localizing assumption on (2.15) means 
that no previous truncation error has been made 
and that

x x t j kn j n j+ += ( ) = … −, , , ,0 1 1

So that we have

x x t h f t x

h f t x
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, ……  (2.16)

Using the local truncation error earlier defined in 
(2.2), we now have

x t x t T h f t x t

h

n k
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j n j n k k n k n k
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( ) ( )) )), (+
=

−

+ + + +

=
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+ = + ( )
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0
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∑∑ + +( )β j n j n jf t x t, ( ) ...

 (2.17)

Subtracting (2.16) from (2.17) we have

x t x T h f t x t

f t x

n k n k n k k n k n k

n k n k

( ) [ , ( )

, ...

+ + + + +

+ +

− = + ( )
− ( )

β

 (2.18)

If we apply mean value theorem on (3.1.10),
We have

f t x t f t x

x t x
f

x
t

n k n k n k n k

n k n k n k n k

+ + + +

+ + + +

( ) − ( ) =

( )−( ) ∂
∂

, ( ) ,

( ),τ

Where ηn+k lies between x n̅+k and x(tn+k)
Therefore,
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1− ∂
∂

( )





( )( ) = …+ + + + +h
f

x
t x t x T

k n k n k n k n k n k
β η, ,  

 (2.19)
Let en+k represent the error at (n+k) point, so that if 
the method is explicit βk=0 and then Tn+k=en+k but 
if the method is implicit βk≠0 and

h
f

x
t n

k n k n k
β ∂

∂




 ( )+ +,  is small then Tn+k ≈ en+k

Again let

 τ
n k n k

x
h
T x+( ) +( ) = ( )…1  (2.20)

For us to show that the approximate solution
{xn|t0 ≤ tn≤ b}┤of (3.1.4) converges to the 
theoretical solution x(t) of the initial value problem

x f t x x t x= ( ) ( ) =, ;
0 0

We[13,14] need to necessarily satisfy the consistency 
condition

τ h T x as h
t t b

n k
n

( ) = → → …
≤ ≤ +max ( )
0

0 0  (2.21)

Plus the condition that
τ(h) = 0(hm), for some m ≥ 1… (2.22)
By this, we[15] show the only necessary and 
sufficient condition for the linear multistep (2.14) 
to be consistent is that

 
j

k

j

j

k

j

j

k

jand j
= = =
∑ ∑ ∑= − + = …
0 0 1

1 1α α β  (2.23)

And for (2.23) above to be valid for all functions 
x(t) is for x(t)  that are m + 1 times continuously 
differentiable to necessarily satisfy

j

k

j

j

k
i

jj j i m
= =

−∑ ∑− + − = = … …
0 1

1 1 2( ) ( ) , ,α β  (2.24)

Hence, we know that

T x w T x T w
n k n k n k+ + ++( ) = ( ) + ( )…α β α β  (2.25)

For all constants a,b and all differentiable 
functions x,w. we now examine the consequence 
of (2.19) and (2.20) by expanding x(t) about tn 
using Taylor’s theorem and we have

x t
j
t t x t R t

j o

k

n m( ) = −( ) ( ) + ( )
=

+∑1
0

1

1  (2.26)

Assuming x(t) is m+1 times continuously 
differentiable. Substituting into the truncation 
error

T x x t x t h F tn k n k

j

k

j n j

j

k

j n j+ +
=

+
=

+( ) = ( )− ( )+ ( )…∑ ∑
0 1

α β

 (2.27)
And also using (2.23)

T x
j
x t T t t T Rn k

j

m
j

n n k n

j

n k m+
=

−

+ + +( ) = ( ) −( )+ …∑
0

1

1

1 ( ) ( ) ( )

 (2.28)
It becomes necessary[16,17]; Keller[18] to calculate
Tn+k (t–tn)

j For j=0

 T cn k

j

k

j+
=

( ) = ≡ − …∑1 10

0

α  (2.29)

For j ≥ 1 we have

 T t t T t tn k n

j

n k n

j

+ +− = −( ) ( )

= − + −






= …

=
+

=
+

=∑ ∑
j
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j n k n

j

j

k

j

i

n j n

it t h t t c h
0 0

1

1

1α β( ) ( )

 (2.30)

 C j i j ij

j

k
i

j

j

k
i

j= − − + −






≥

= =

=∑ ∑1 1
0 1

1( ) ( ) ,α β

This gives

T x
c

j
h x t T Rn k

j

m
j j

n n k m+
=

+ +( ) = ( )+ ( )…∑
1

1

( )  (2.31)

Moreover, if we write the remainder Rm+1 (t) as

R t
m

t t x tm n

m m

n+
+ +( ) =

+( ) − ( )+…1

1 11

1 !
( )

Then,

T R t
C

m
h x t hn k m

m m m

n

m

+ +
+ + + +( ) =
+( ) ( ) + …1
1 1 1 2

1
0

!
( )  

 (2.32)

To obtain the consistency condition (2.20), we 
need τ(h)– 0(h) and this requires Tn+k (x)=0(h2).
Using (2.19) with m=1, we must have C0,C1=0 
which gives the set of equations (2.22) which are 
referred to as consistency conditions in some texts. 
Finally, to obtain (3.1.14) for some m ≥ 1, we must 
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have Tn+k (x)=0(hm+1). From (2.30) and (2.31), this 
will be true if and only if Ci=0,i=0,1,2…m.
This proves the conditions (2.21) and completes 
the proof.
Theorem 2.[17-20] Assume the consistency condition 
of (2.10), then the linear multistep method (1.2) is 
stable if and only if the following root conditions 
(2.11)-(2.12) are satisfied
 The root |rj|< 1 =j = 0,1,…,k… (2.33)

 |rj|=1⟹ρ1 (rj) ≠ 0… (2.34)
Where

ρ αr r rk

j

k

j

j( ) = −−

=
∑1

0

Proof:
Given the linear multistep

x x h f a t nn k

j

k

j n j

k

k

j n j n j+
=

−

+
=

−

+ ++ + ≤ ≤ …∑ ∑
0

1

0

1

α β ;  (2.35)

With the associated characteristic polynomial

 P r r rk

j

k

j

j( ) = − …+

=
∑1

0

α  (2.36)

such that P(1)=0 by the consistency condition. Let 
r0,…,rn denote the respective roots of P(r), repeated 
according to their multiplying and let r0=1.
The linear multistep method 2.8. Satisfies the root 
condition if
 |rj| ≤ 1,j=0,1,…,k… (2.37)

 |rj|=1⟹P1 (rj) ≠ 0… (2.38)
Let (2.8) be stable we now prove that the root 
condition (2.37) and (2.38) are satisfied. By 
contradiction let
|rj(0)|>1 for some j. This is to say we consider the 
initial value problem x^1≡0;x(0)=0 with solution 
x(t)=0. So that (2.8) becomes

 x x n kn k

j

k

j n j+
=

−

+= ≥ …∑
0

1

α ;  (2.39)

If we take x0=x1=...=xk=0, then the numerical 
solution clearly becomes xn=0 for all n ≥ 0.
For perturbed initial values, let
 z0=∈,z1=∈r1 (0),…,zn =∈ r1 (0)p… (2.40)

And for these initial values

max ( )
0

1 0≤ −
− ≤∈

n k
n n

p
x z r

Which is a uniform bound for all small values of 
h, since the right side is independent of h, as ∈→0, 
the bound also tend to zero.
The solution (2.12)[22-24] with the initial condition 
(2.13) is simply zn=∈rj (0)n;n ≥ 0. For the derivation 
from {xn}

  max ( )
0≤ −

− = → ∞
n k

n nx z N h

Moreover, the bound that the method is unstable 
when |rj (0)| > 0. Hence, if the method is stable, the 
root condition |rj (0)|≤1 must be satisfied.
Conversely, assume the root condition is satisfied, 
we now prove for stability restricted to the 
exponential equation.
 x1=λx; x(0)=1. (2.41)

This[25-27] involves solution of non-homogenous 
linear difference equations which we simplify by 
assuming the roots rj (0);j=0,1,…,k to be distinct. 
The same will be true of rj (hλ) provided the 
values of h is kept sufficiently small, say 0≤ h 
≤  h0. Assume {xn} and {zn} to be two solutions of

1 0 11 1

0

1

−( ) − + = ≥ …+ + +
=

−

+∑h x h x nk n k

j

k

j j n jλβ α λβ( ) ;

 (2.42)
On (2.10) on [x0,b] and assume that

max ,
0

0
0

≤ −
− ≤∈ ≤ ≤

n k
n n
x z h h

Introduce the error en = xn – zn and subtracting 
using (2.3.8) for each solution

1 0 1−( ) − +( ) = ≤ ≤ …+ + +h e h e x x bk n k j j j k n kλβ α λβ ;

 (2.43)
The general equation becomes

 e r h nn

j

k

j j

n

= ≥
=
∑
1

0γ λ( ) ;  (2.44)

The coefficient γ0,…,γk must be chosen so that 
the solution (2.17) will then agree with the given 
initial perturbations e0,…,ek and will satisfy the 
difference equation (2.16). Using the bound 
z0=∈,z1=∈r1 (0),…,zn=∈rj (0)p and the theory of 
linear system of equations, we have

 max ;
0

0
0

≤ −
≤ ≤ ≤ …

n k
n

c h hγ ε  (2.45)

for some constants cj>0.
To bound the solution en on [x0,b], we must bound 
each term [rj (hλ)]n to do so, consider the expansion
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 (U) =rj (0)+Urj (ξ)… (2.46)
For some ξ between 0 and U. To compute rj

1 (u), 
differentiate the identity

 p r u u r uj j( )( ) − ( )( ) =σ 0

p r cu r u u u r u r uj j j j

1 1 1 1 0( )( ) − ( ) − ( ) + ( )( ) ( )( )  =σ σ

r u p r u u r u r uj j j j

1 1 1( ) ( )( ) − ( )( ) = ( )[ ( )σ σ

 r u
r u

p r u ur r u
j

j

1

1
( ) = ( )( )

( )( ) − ( )
…

σ

( )
 (2.47)

By assumption that rj (0) is a simple root of 
p(r)=0; 0 ≤ j ≤ k, it follows that p1 (rj (0))=0 and 
by continuity, p1 (rj (u))≠0 for all sufficiently small 
values of u, the denominator in (2.20) is non-zero 
and we can bound rj (u)|rj (u)|=c2 for all |u|≤ u0 For 
some U0≥0.
Using this with (3.3.12) and the root condition 
(3.2.4), we [Stetter;[28] Stetter[29]] have

[ ]r h r c h c hj

n

jλ λ λ( ) ≤ ( ) + ( ) ≤ + ( )0 12 2

[ ] [ ] (r h c h e e bxj

n n C c

n

h hλ λ λ( ) ≤ + ( ) ≤ ≤1 2

2 2 ) | λ | 

for all 0 ≤ h ≤h0.
Combine this with (2.18) and (2.19) to get Max|en| 
≤ c2 ≤ |ε| ec2 (bxn) |λ| for an approximate constant 
c0. This concludes the proof.
Theorem2.3:[21-24] The linear multistep method 
(1.2) is said to be convergent if and only if it is 
consistent and stable.
Proof:
By this, we want proof that if the consistency 
condition is assumed, the linear multistep method

x x h f a t nn k

j

k

j n j

j

k

j n j n j+
=

−

+
=

+ += + ≤ ≤∑ ∑
0

1

0

α β ;  (2.48)

Is convergent if and only if the root conditions 
(2.10) and (2.11) are satisfied.
We assume first the root conditions are satisfied 
and then show the linear multi step (2.8)
Is convergent. To start, we use the problem x=0, 
x(0) =0 with the solution x (t) = 0. Then, the multi-
step method (2.8) becomes

 x x n kn k

j

k

j n j+
=

−

+= ≥ …∑
0

1

α ,  (2.49)

With x0,…,xk

Satisfying n (h) = max|xn |→0 as h→0… (2.50)

Suppose[25-28] that the not condition is violated, we 
will show that (2.10) is not convergent to x(t)=0. 
Assume that some |rj (0)|>1 then a satisfactory 
solution of (2.11) is

 x h r t t bn j

n

n= ( ) ≤ ≤ …[ ] ;0 0

Condition (2.10) is satisfied since n(h)=|h(rj 
(0))|→0 as h→0.
However, the solution (2.11) does not converge. 
First

 Max x t x h h r t bn n j

N h

n( ) − = ≤ ≤[ ( )
( )

0 0

Consider those values of h b

N h
= ( ) . Then, L’ 

Hospital’s rule can be used to show that

  Lim
b

N
r

N
( )0 = ∞

Showing that (2.11) does not converge.
Conversely assume the root condition is satisfied 
as with theorem 2.2; it is rather difficult to give 
a general proof of converge for an arbitrary 
differential equation. The present proof is 
restricted to the exponential equation (2.14) and 
again we assume that the roots rj=0 are distinct.
To simplify the proof, we will show that the term 
γ0 [r0 (λλ)]n in the solution

x r hn

j

k

j j

n=
=
∑
0

γ λ( )

Will converge to the solution eλt on [0,b]. The 
remaining terms
γj|rj (hλ) |n,j=1,2,…,k are parasitic solution to 
converge to zero as h→0. Expand r_0 (hλ) using 
Taylor’s theorem,

r0 (hλ)=r0 (0)+hλr0
2
 (0)+0(h2)

From (2.19) r
0

2

1
0

1

1
( ) = ( )

( )
σ
ρ

and using this 

consistency condition (2.11), this leads to r0
2
 (0)=1. 

then

r h h h e hh

0

2 21 0 0λ λ λ( ) = + + ( ) = + ( )

[ ] [ ] [ ]r h e h e h
n hn n tn

0

2 2
1 0 1 0λ λ λ( ) = + ( ) = + ( )

Thus,

max [ ]
0

0
0 0

≤ ≤
( ) = → → …

t b

t

n

nr h e as h   (2.51)
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We[30,31] must now show that the coefficient γ0→1 
as h→1. The coefficient γ0,…,γk satisfy the linear 
system

γ0+γ1+...+γk=x0

γ λ γ λ0 0 1r h r h xk k( )  +…+ ( ) =[ ]

γ λ γ λ0 0 2r h r h x
k

k k

k( )  +…+ ( ) = …[ ]  (2.52)

The initial values x0,…,xk are assumed to satisfy

r h e x as hj
�n k

»t

n

n( ) max
0

0 0
≤ −

− → →

However, this implies
 Lim xn=1,0 ≤ n ≤ p… (2.53)
The coefficient γ0 can be obtained using Cramer’s 
rule to solve (3.3.5) then

γ
0

0

1 1

0 1

1

1 1

1 1 1
=

x

x r r

x r r

r r r

r r r

k

k k k

k

k

k

k k

k

k

�

�
�

�
�

�
�

�

The denominator converges to the vandermonde 
determinant for r0 (0)=1,r1 (0),…,rk (0); and this is 
non-zero since the roots are distinct. Using (2.13), 
the numerator converges to the same quantity as 
h→0. Therefore, γ→1 as h→0, using this, along 
with (2.10), the solution {xn} converges to x(t)=eλt 
on [0,b]. This completes the proof.

ILLUSTRATIVE EXPERIMENT

Example 3.1 (problem statement)
Write a general-purpose function named 
HAMMING that solves a system offirst-order 
ordinary differential equations.

dy

dx
f x y y yn

1
1 1 2= …( ), , , , ,

 dy

dx
f x y y yn

2
2 1 2= …( ), , , ,  (3.1)

dy

dx
f x y y yn
n n= …( ), , , , ,1 2

Using Hamming’s predictor-corrector method 
embedded in C1 and C2 of page 6, Section 2 and 

also in,[3] write a main program that solves the 
second-order ordinary differential equation.

 d y

dx
y

2

2
= − ,  (3.2)

Subject to the initial conditions

 y
dy

dx
0 0 0 1( ) = ( ) =  (3.3)

The program should call on the fourth-order 
Runge-kutta function RUNGE, see[3] to find 
the essential starting values for Hamming’s 
algorithm  as
  y Vo1 0,

=  (3.4)

  y
2 0

0
,
=

And thereafter, should call on HAMMING to 
calculate estimates of y and dy/dx on the interval 
[0,xmax]. Evaluate the numerical solutions for 
several different step sizes, h, and compare the 
numerical results with the true solutions.

  y x x( ) = sin  (3.5)

  dy

dx
x= cos .

Method of Solution

Let yj,i be the final modification of the estimated 
solution for the j th dependent variable, yj,xi, 
resulting from Hamming’s method and left fj,i be 
the calculated estimate of fj at xi, that is,
 y y xj i j i, ,= ( )

 f f x y y yj i j i i i n i, , , ,, , , , .= …( )1 2  (3.6)

Assume that yj,i,yj,i-1,yj,i-2,yj,i-3, fj,i,fj,i-1, fj,1-2, have 
already been found and are available for j=1,2,…, 
n. Let an estimate of the local truncation error for 
the corrector equation (3.4) for the j th dependent 
variable be denoted ej,i. Then, assuming that 
the ej,i, j=1,2,…,n, are available, the procedure 
outlined for Hamming’s method in the above may 
be modified to handle a system of n simultaneous 
first-order ordinary differential equations by 
simply appending a leading subscript, j, to all if all 
y and f terms in (3.1) to (3.6). In terms of the new 
nomenclature, Steps 2 through 6 of the outline in 
the above are:
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2. The predicted solutions are computed using 
the Milne predictor below;

y y hf f f f j nj i j i j i j i j i, , , , , ,( ), , , ,+ − − −= + − + = …1 0 3 1 2

4

3
2 2 1 2

 (3.7)
3. The predicted solutions, yj,i+1,0, are modified 

(assuming that the local truncation error 
estimates, ej,i+1, j=1,2,…,n, will not be 
significantly different from estimates ej,i, 
j=1,2,…,n) as in (3.5):

Y y e j nj i j i j i, , , , , , , , , .+ += + = …1 0 1 0

112

9
1 2  (3.8)

4. The j th corrector equation corresponding to 
(3.4) is applied for each dependent variable:

y y y h f f

j

j i j i j i j i j i, , , , , , , ,

, ,..

+ − + −= + − + +( ) 
=

11 2 1 0 1

1

8
9 3 2

1 2 .., n
(3.9)

Where

f f x y y yj i i i i n i, , , , , , , ,( , , , , )+ + + + += …1 0 1 1 1 0 2 1 0 1 0  (3.10)

The corrector in (3.5) is being applied just once 
for each variable, the customary practice. The 
corrector equations could, however, be applied 
more than once, as in (3.6). Note that the subscript 
j, in (3.6) is an iteration counter, and is not the index 
j, on the dependent variables used throughout this 
example.
5. Estimate the local truncation error for each of 

the corrector equations on the current interval 
as in (3.6)

e y y j nj i j i j i, , , , , , , , , .+ + += −( ) = …1 11 1 0

9

121
1 2  (3.11)

6. Make the final modifications of the solutions 
of the corrector equations as in (3.8)

y y e j nj i j i j i, , , ,
, , , ,+ + += − = …

1 11 1
1 2  (3.12)

After evaluation the yj,i+1, the n values fj,i+1 may be 
computed from (3.13) as

f f x y y y , j nj i j i i i n i, , , , ,, , , , , , .+ + + + += …( ) = …1 1 1 1 2 1 1 1 2

 (3.13)
If desired, the entire process may be repeated 
for the next interval by starting again at Step 2. 
Therefore, the function HAMING can be written 
to solving arbitrary system of first-order equations, 
provided that the 5n+2 essential numbers, xi,h and
yj,i-3,

 
f

f

f

e

J n

j i

j i

j i

j i,

,

,

,,

,

,

,

, , , ,−

−






= …1

2

1 2  (3.14)

Are available for the function to use on entry to 
the predictor section, and the essential numbers 
and

 
y

y

y

f

f

f

j n

j i

j i

j i

j i

j i

j i

,

,

, , ,

,

,

,

,

,

,

,

,

, , , ,−

+

−

−









= …2

1 0

1

2

1 2  (3.15)

Then, write the calling program and function 
HAMMING, so that the matrices Y and F, and 
the vector, e ́have the following contents at the 
indicated points in the algorithm.
Before entry into the corrector section of 
HAMMING:
Y is unchanged from (3.16)

 F

f

f

f

f

f

f

f

f

f

i

i

i

i

i

i

j i

j i

j i

=
+

−

+

−

+

−

1 0

1

1 1

2 1 0

2

2 1

1 0

1

,

,

,

, ,

,

,

, ,

,

,













f

f

f

n i

n i

n i

, ,

,

,

+

−

















1 0

1

 (3.16)

e ́ is unchanged from (3.16)
After return from the corrector section of 
HAMMING:

 Y

y

y

y

y

y

y

y

y

y

y

i

i

i

i

i

i

j i

j=
+

−

−

+

−

−

+1 1

1

1 1

1 2

2 1

2

2 1 1

2 1 2

1,

,

,

,

,

,

,

,

,







,,

,

,

,

,

,

,

i

j i

j i

n i

n i

n i

n i

y

y

y

y

y

y

−

−

+

−

−























1

2

1

1

2









 (3.17)

F is unchanged from (3.20)

 ′ =  e e e e ei i j i n i1 2, , , ,   (3.18)

If the calling program uses (3.14) to replace the 
elements in the first row of F after the return from 
the corrector section of HAMING, so that

 F

f

f

f

f

f

f

f

f

f

fi

i

i

i

i

i

j i

j i

j i

n

=
+

−

+

−

+

−

1 1

1

1 1

2 1

2

2 1

1

1

,

,

,

,

,

,

,

,

,













,,

,

,

i

n i

n i

f

f

+

−

















1

1

 (3.19)

Then, the matrices Y and F and the vector e ́ are 
ready for a call on the predictor section of HAMING 
for the next integration step. The independent 
variable is incremented in the predictor section, 
that is,

 x x h
i i+ = +
1

 (3.20)
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So that the calling program will automatically 
have the proper value to calculate the fj,i+1,0 and 
fj,i+1 from (3.10) and (3.14), respectively.
Assuming that the integration process begins at 
x=x0 and that the only known conditions on (3.2) 
are
  y1,0=c1

  y2,0=c2 (3.21)

  y cn n,0 =

There is not enough information to calculate the 
elements of (3.17), (3.18), and (3.19). Therefore, 
HAMMING cannot be called directly when x1=x0. 
The usual procedure is to use a one-step method to 
integrate across the first steps to evaluate

 
y

y

y

j n

j

j

j

,

,

,

, , ,

1

2

3

1 2









= …  (3.22)

With (3.15) and (3.16), the matrix Y of (3.17) is 
known for i=3. The matrix F of (3.19) may be 
evaluated from (3.15) and (3.16) for i=3. The 
vector of local truncation error estimates (3.14) 
for i=3 is normally unknown, and should be set to 
zero unless better values are available from other 
sources. Hamming may then be called for the first 
time.
In the calling program that follows, the function 
RUNGE, already developed in,[3] is used to 
generate the solutions of (3.22). Since RUNGE 
implements the fourth-order Runge-kutta method, 
the solutions of (3.27) should be comparable in 
accuracy with the solutions generated by the 
Hamming’s predictor-corrector algorithm, also a 
fourth-order method.
The main program reads data values for 
n,x0,h,xmax,int,y1,0,y2,0,…,yn,0. Here, int is the 
number of intergration steps between the printings 
of solution values. This program is a reasonably 
general one. However, the defining statements 
for computation of the derivative estimates (3.11) 
and (3.14) would be different for each system of 
differential equations.
For test purposes, the differential equation solved 
is (3.2), subject to the initial conditions of (3.3). 
First, the second-order equation must be written as 
a system or two first-order equations. Let
y1=y

 y
dy

dx
2 =  (3.23)

Then,

 dy

dx
f x y y

dy

dx
y1

1 1 2 2= ( ) = =, ,  (3.24)

 dy

dx
f x y y

d y

dx
y y2

2 1 2

2

2 1= ( ) = = − = −, ,

So that
  f1,i=y2,i

  f2= –y2,I (3.25)

The initial conditions of (3.3)

  y1,0=0

  y2,0=1 (3.26)

With a known program listing, given, we use the 
listed data below
Data

X= 0.0000 H= 1.000000 XMAX= 5.0000

INT= 1 N= 2

YR (1) YR (2)= 0.00000 1.00000

X= 0.0000 H= 0.500000 XMAX= 5.0000

INT= 1 N= 2

YR (1) YR (2) 0.00000 1.00000

X= 0.00000 H= 0.250000 XMAX= 5.00000

INT= 2 N= 2

YR (1) YR (2)= 0.00000 1.00000

X= 0.0000 H= 0.125000 XMAX= 5.0000

INT= 4 N= 2

YR (1) YR (2) 0.00000 1.00000

X= 0.0000 H= 0.062500 XMAX= 5.0000

INT= 8 N= 2

YR (1) YR (2)= 0.00000 1.00000

X= 0.0000 H= 0.031250 XMAX= 5.0000

INT= 16 N= 2

YR (1) YR (2) 0.00000 1.00000

X= 0.00000 H= 0.015625 XMAX= 5.00000

INT= 32 N= 2

YR (1) YR (2)= 0.00000 1.00000

Moreover, we have the following results

Computer Output

Results for the first data set
H = 0.100D 01
XMAX = 5.0000
INT = 1
N = 2
X Y (1) Y (2)
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X Y (1) Y (2)
0.0 0.0 0.1000000 01

1.0000 0.8333333D 00 0.5416667D 00

2.0000 0.9027778D 00 –0.4010417D 00

3.0000 0.1548032D 00 –0.9695457D 00

4.0000 –0.6638999D 00 –0.6880225D 00

5.0000 –0.1045312D 00 0.1429169D 00

Results for the second data set
H = 0.500D 00
XMAX = 5.0000
INT = 1
N = 2

X Y (1) Y (2)
0.0 0.0 0.1000000D 01

0.5000 0.4791667D 00 0.8776042D 00

1.0000 0.8410373D 00 0.5405884D 00

1.5000 0.9971298D 00 0.7142556D -01

2.0000 0.9104181D 00 –0.4146978D 00

2.5000 0.6001440D 00 –0.8012885D 00

3.0000 0.1422377D 00 –0.9912065D 00

3.5000 –0.3510641D 00 –0.9387887D 00

4.0000 –0.7588721D 00 –0.6554891D 00

4.5000 –0.9810034D 00 –0.2112528D 00

5.0000 –0.9627114D 00 0.2857746D 00

Results for the third data set
H = 0.250D 00
XMAX = 5.0000
INT = 2
N = 2

X Y (1) Y (2)
0.0 0.0 0.1000000D 01

0.5000 0.4791667D 00 0.8776042D 00

1.0000 0.8410373D 00 0.5405884D 00

1.5000 0.9971298D 00 0.7142556D -01

2.0000 0.9104181D 00 –0.4146978D 00

2.5000 0.6001440D 00 –0.8012885D 00

3.0000 0.1422377D 00 –0.9912065D 00

3.5000 –0.3510641D 00 –0.9387887D 00

4.0000 –0.7588721D 00 –0.6554891D 00

4.5000 –0.9810034D 00 –0.2112528D 00

5.0000 –0.9627114D 00 0.2857746D 00

Results for the fourth data set
H = 0.125D 00
XMAX = 5.0000
INT = 4
N = 2

X Y (1) Y (2)
0.0 0.0 00 0.1000000D -01

0.5000 0.4794249D 00 0.8775832D 00

1.0000 0.8414708D 00 0.5403028D 00

1.5000 0.9974948D 00 0.5403028D -01

2.0000 0.9092971D 00 –0.4161466D 00

2.5000 0.5984717D 00 –0.8011433D 00

3.0000 0.1411195D 00 –0.9899918D 00

3.5000 –0.3507835D 00 –0.9364555D 00

4.0000 –0.7568022D 00 –0.6536421D 00

4.5000 –0.9775289D 00 –0.2107944D 00

5.0000 –0.9589223D 00 0.2836631D 00

Results for the fifth data set
H = 0.625D-01
XMAX = 5.0000
INT = 8
N = 2

X Y (1) Y (2)
0.0 0.0 00 0.1000000D -01

0.5000 0.4794255D 00 0.8775826D 00

1.0000 0.8414710D 00 0.5403023D 00

1.5000 0.9974950D 00 0.7073721D -01

2.0000 0.9092974D 00 –0.4161468D 00

2.5000 0.5984721D 00 –0.8011436D 00

3.0000 0.1411200D 00 –0.9899925D 00

3.5000 –0.3507832D 00 –0.9364566D 00

4.0000 –0.7568025D 00 –0.6536436D 00

4.5000 –0.9775301D 00 –0.2107958D 00

5.0000 –0.9589242D 00 0.2836622D 00

Results for the sixth data set
H = 0.312D-01
XMAX = 5.0000
INT = 16
N = 2

X Y (1) Y (2)
0.0 0.0 00 0.1000000D –01

0.5000 0.4794255D 00 0.8775826D 00

1.0000 0.8414710D 00 0.5403023D 00

1.5000 0.9974950D 00 0.7073720D –01

2.0000 0.9092974D 00 –0.4161468D 00

2.5000 0.5984721D 00 –0.8011436D 00

3.0000 0.1411200D 00 –0.9899925D 00

3.5000 –0.3507832D 00 –0.9364567D 00

4.0000 –0.7568025D 00 –0.6536436D 00

4.5000 –0.9775301D 00 –0.2107958D 00

5.0000 –0.9589243D 00 0.2836622D 00

Results for the seventh data set
H= 0.156D-01
XMAX= 5.0000
INT= 32
N= 2

X Y (1) Y (2)
0.0 0.0 00 0.1000000D –01

0.5000 0.4794255D 00 0.8775826D 00
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1.0000 0.8414710D 00 0.5403023D 00

1.5000 0.9974950D 00 0.7073720D –01

2.0000 0.9092974D 00 –0.4161468D 00

2.5000 0.5984721D 00 –0.8011436D 00

3.0000 0.1411200D 00 –0.9899925D 00

3.5000 –0.3507832D 00 –0.9364567D 00

4.0000 –0.7568025D 00 –0.6536436D 00

4.5000 –0.9775301D 00 –0.2107958D 00

5.0000 –0.9589243D 00 0.2836622D 00

DISCUSSION OF RESULTS

Double-precision arithmetic has been used for all 
calculations.
Differential equation (3.2) with initial conditions 
given by (3.2) has been solved on the interval 
[0,5] with step-size h=1.0, 0, 0.25, 0.125, 0.0625, 
0.03125, and 0.015625 to seven-place accuracy, 
the true solutions.
y1=y=sin⁡x

 y
dy

dx
x2 = = cos ,  (3.27)

Are listed in Tables 1 and 2.
Results for step-sizes 0.03125 and 0.015625 (data 
sets 6 and 7) agree with the true values to seven 
figures. Results for larger step sizes are not of 
acceptable accuracy. The program has been run 
with even larger values of h (results not shown) 
as well. For h large enough, the solutions “blow 
up” in a fashion similar to that already observed 
for the Runge-kutta’s method in Example 6.3[29-32]

In view of the periodic nature of the solution 
functions, it is not surprising that as the step size 
approaches the length of the functional period, 
the solutions become meaningless. Clearly, for 
step sizes larger than the period, virtually all local 
information about the curvature of the function is 
lost; it would be unreasonable to expect accurate 
solutions in such cases.

CONCLUSION

The findings of the above experiment confirms 
that the linear multistep methods are indeed fixed 
point iteration methods as stated in the main result.
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