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ABSTRACT
When a regression model is considered for an application, we can usually not be certain in advance 
that the model is appropriate for that application, any one, or several, of the features of the model, such 
as linearity of the regression function or normality of the error terms, may not be appropriate for the 
particular data at hand. Hence, the diagnostic checking techniques on the regression model are essential. 
This study therefore is on model diagnostic checking techniques with application to linear regression 
analysis. In this study, a method useful for diagnosing violation of basic regression assumptions are 
presented and tested using a secondary data on babies’ weight at birth which serves as dependent variable 
and mothers’ weight and ages as independent variables. All the assumptions tested from the objectives 
(Normality of residual, collinearity between the independent variable, outlier/leverage, and linearity of 
the model) are met and no one deviated from the assumptions of multiple linear regression fitted on the 
data.
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INTRODUCTION

Regression analysis is a statistical technique 
for investigating and modeling the relationship 
between two or more variables. More specifically, 
it is an attempt to explain movement in one variable 
by reference to movements in one or more other 
variables. To make this definition more concrete, 
we can denote the variable whose movements the 
regression seeks to explain by y and the variables 
which are used to explain those variation by x1, 
x2,… x3. Hence, in this relative set up, it would 
be said that the variations in k variables (the x’s) 
cause changes in some variable, y’s.[1]

Applications of regression analysis exist in almost 
every field of human endeavor. In econometrics, 
the dependent variable might be a family’ s 
consumption expenditure and the independent 
variables might be the family’s income, number 
of children in the family, and other factors that 
would affect the family’s consumption patterns. 

In political science, the dependent variable 
might be a state’s level of welfare spending and 
the independent variables measures of public 
opinion and institutional variables that would 
cause the state to have higher or lower levels of 
welfare spending. In sociology, the dependent 
variable might be a measure of the social status 
of various occupations and the independent 
variables characteristics of the occupations (pay, 
qualifications, etc.). In psychology, the dependent 
variable might be individual’s racial tolerance as 
measured on a standard scale and with indicators 
of social background as independent variables. 
In education, the dependent variable might be 
a student’s score on an achievement test and 
the independent variables characteristics of the 
student’s family, quality of teachers, or school. 
One major way to judge whether a variable adds 
to the explanatory power of a model is by looking 
at the impact its inclusion has on the value of 
R-Squared. If the value of R-Squared increases 
significantly when a variable is added to the 
model, then the extra information provided by this 
variable increases the model’s ability to explain 
the variation in the response variable Imam.[2]
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Diagnostic techniques were gradually developed 
to find problems in model-fitting and to assess 
the quality and reliability of regression estimates. 
These concerns turned into an important area 
in regression theory intended to explore the 
characteristics of a fitted regression model for a 
given data set. Discussion of diagnostics for linear 
regression models is often indispensable chapters 
or sections in most of the statistical textbooks on 
linear models. One of the most influential books on 
the topic was regression diagnostics: Identifying 
influential data and sources of collinearity by 
Belsley et al.[3]

Survey literature has not given much attention to 
diagnostics for linear regression models. Deville and 
Särndal,[4] and Potter[5] discuss some possibilities 
for locating or trimming extreme survey weights 
when the goal is to estimate population totals 
and other simple descriptive statistics. Hulliger[6] 
and Moreno-Rebollo et al.[7] addresses the effect 
of outliers on the Horvitz-Thompson estimator 
of a population total. Smith (1987) demonstrates 
diagnostics based on case deletion and a form of 
the influence function. Chambers and Skinner,[8] 
Gwet and Rivest,[9] Welsh and Ronchetti,[10] and 
Duchesne (1999) conduct research on outlier 
robust estimation techniques for totals. Elliott[11] 
and Korn and Graubard (1995)[12] are two of the 
few references which introduce techniques for the 
evaluation of the quality of regression on complex 
survey data.
When a regression model is considered for an 
application, we can usually not be certain in 
advance that the model is appropriate for that 
application, any one, or several, of the features 
of the model, such as linearity of the regression 
function or normality of the error terms, may not 
be appropriate for the particular data at hand.[13] 
Hence, it is important to examine the suitability 
of the model for the data before inferences based 
on that model are undertaken. This achieved 
using model diagnostic checking techniques on 
the regression model. In this section, we discuss 
some simple graphic methods for studying the 
appropriateness of a model, as well as some 
remedial measures that can be helpful when the 
data are not in accordance with the conditions of 
the regression model. Therefore, the aim of this 
study is to examine departures from the assumption 
of linear regression model with normal errors 
through model diagnostic checking techniques. 
We shall consider following six important types 

of departures from linear regression model with 
normal errors: non-linearity, non-constant of 
variances of error term, multicollinearity, outlier 
in observations, and non-normality of error term.

METHODOLOGY

This section involves the full procedure for the 
diagnosis testing on deviations of regression 
model from some its assumptions that are 
considered in this paper. The data used are 
secondary which comprises a dependent/response 
and two independent/predictor variables. In 
regression analysis, tests based on the square of 
the residuals may be used to detect non-linearity. 
This study considers the following five important 
types of departures from linear regression model. 
These are as follows: the regression function is 
not linear, the error terms do not have constant 
variance, the error terms are not independent, the 
model fits all but one or a few outlier observations, 
and the error terms are not normally distributed. 
The procedures to carry out these departures are 
stated as follows:

Linear Regression Models

We consider a basic linear model where there is 
only one predictor variable and the regression 
function is linear. Model with more than one 
predictor variable is straight forward. The model 
can be stated as follows:

Y X
i 0 1 i i
= + +β β ε  (1)

Where Yi is the value of the response variable 
in the ith trial β0 and β1 are parameters, Xi is 
a known constant, namely, the value of the 
predictor variable in the ith trial, εi is a random 
error term with mean zero and variance σ2 and 
εi and εj are uncorrelated so that their covariance 
is zero.
Regression model (1) is said to be simple, linear 
in the parameters, and linear in the predictor 
variable. It is “simple” in that there is only one 
predictor variable, “linear in the parameters,” 
because no parameters appears as an exponent 
or its multiplied or divided by another parameter, 
and “linear in predictor variable” because this 
variable appears only in the first power. A model 
that is linear in the parameters and in the predictor 
variable is also called first order model.
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Diagnostics and Remedial Measures

When a regression model is considered for an 
application, we can usually not be certain in 
advance that the model is appropriate for that 
application, any one, or several, of the features 
of the model, such as linearity of the regression 
function or normality of the error terms, may not be 
appropriate for the particular data at hand. Hence, it 
is important to examine the aptness of the model for 
the data before inferences based on that model are 
undertaken. In this section, we discuss some simple 
graphic methods for studying the appropriateness 
of a model, as well as some remedial measures that 
can be helpful when the data are not in accordance 
with the conditions of the regression model.

Non-linearity of Regression Model

Whether a linear regression function is appropriate for 
the data being analyzed can be studied from a residual 
plot against the predictor variable or equivalently 
from a residual plot against the fitted values.
Figure 1a shows a prototype situation of the residual 
plot against X when a linear regression model is 
appropriate. The residuals then fall within a horizontal 
band centered around 0, displaying no systematic 
tendencies to be positive and negative. Figure 1b 
shows a prototype situation of a departure from the 
linear regression model that indicates the need for a 
curvilinear regression function. Here, the residuals tend 
to vary in a systematic fashion between being positive 
and negative. However, Figure 2a displays a prototype 
situation of a departure from the linear regression 
model that indicates the need a nonlinear relationship 
while Figure 2b shows a linear relationship.

Non-constancy of Error Variance

Plots of residuals against the predictor variable or 
against the fitted values are not only helpful to study 
whether a linear regression function is appropriate 
but also to examine whether the variance of the error 
terms is constant. The prototype plot in Figure 1a 
exemplifies residual plots when error term variance 
is constant. Figure 2a shows a prototype picture of 
residual plot when the error variance increases with X.

Presence of Outliers

Outliers are extreme observations. Residual 
outliers can be identified from residual plots 

Figure 1: (a and b) Prototype situation of the residual plot 
against x when a linear regression model is appropriate

against X or Ŷ . Outliers can create great difficulty. 
When we encounter one, our first suspicion is that 
the observation resulted from a mistake or other 
extraneous effect. On the other hand, outliers 
may convey significant information, as when an 
outlier occurs due to an interaction with another 
predictor omitted from the model. A safe rule 
frequently suggested is to discard an outlier only 
if there is direct evidence that it represents in error 
in recording, a miscalculation, a malfunctioning 
of equipment, or a similar type of circumstances.

Non-independence of Error Terms

Whenever data are obtained in a time sequence or 
some other type of sequence, such as for adjacent 
geographical areas, it is good idea to prepare a 
sequence plot of the residuals. The purpose of 
plotting the residuals against time or some other 
type of sequence is to see if there is any correlation 
between error terms that are near each other in 
the sequence. A prototype residual plot showing a 
time related trend effect is presented in Figure 2b, 
which portrays a linear time related trend effect. 
When the error terms are independent, we expect 
the residuals in a sequence plot to fluctuate in a 
more or less random pattern around the base line 0.

Non-normality of Error Terms

Small departures from normality do not create any 
serious problems. Major departures, on the other 
hand, should be of concern. The normality of the 
error terms can be studied informally by examining 
the residuals in a variety of graphic ways. 

a b

Figure 2: (a and b) A prototype situation of a departure 
from the linear regression model

a b
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Comparison of frequencies when the number of 
cases is reasonably large is to compare actual 
frequencies of the residuals against expected 
frequencies under normality. For example, one 
can determine whether, say, about 90% of the 
residuals fall between ±1.645 MSE .  Normal 
probability plot: Still another possibility is to 
prepare a normal probability plot of the residuals. 
Here, each residual is plotted against its expected 
value under normality. A plot that is nearly linear 
suggests agreement with normality, whereas a plot 
that departs substantially from linearity suggests 
that the error distribution is not normal.

Omission of Important Predictor Variables

Residuals should also be plotted against variables 
omitted from the model that might have important 
effects on the response. The purpose of this 
additional analysis is to determine whether there 
are any key variables that could provide important 
additional descriptive and predictive power to 
the model. The residuals are plotted against the 
additional predictor variable to see whether or not 
the residuals tend to vary systematically with the 
level of the additional predictor variable.

Overview of Tests

Graphical analysis of residuals is inherently 
subjective. Nevertheless, subjective analysis 
of a variety of interrelated residuals plots will 
frequently reveal difficulties with the model more 
clearly than particular formal tests.

TESTS FOR RANDOMNESS

A run test is frequently used to test for lack of 
randomness in the residuals arranged in time order. 
Another test, specially designed for lack of randomness 
in least squares residuals is the Durbin-Watson test.

Durbin–Watson test

The Durbin–Watson test assumes the first order 
autoregressive error models. The test consists of 
determining whether or not the autocorrelation 
coefficient (ρ, say) is zero. The usual test 
alternatives considered are:
H0: ρ = 0

H0: ρ > 0
The Durbin–Watson test statistic D is obtained 
using ordinary least squares to fit the regression 
function, calculating the ordinary residuals: 
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Exact critical values are difficult to obtain, 
but Durbin–Watson has obtained lower and 
upper bound dL

 and dU such that a value of D 
outside these bounds leads to a definite decision. 
The decision rule for testing between the 
alternatives is:
if D > dU, conclude H0
if D < dL, conclude H1
if L Ud D d≤ ≤ , test is inconclusive.

Small value of D leads to the conclusion that ρ > 0.

Correlation Test for Normality

In addition to visually assessing the appropriate 
linearity of the points plotted in a normal 
probability plot, a formal test for normality of 
the error terms can be conducted by calculating 
the coefficient of correlation between residuals ei 
and their expected values under normality. A high 
value of the correlation coefficient is indicative of 
normality.

TESTS FOR CONSTANCY OF ERROR 
VARIANCE

Modified Levene Test

The test is based on the variability of the residuals. 
Let ei1 denotes the ith residual for group 1 and ei2 
denotes the ith residual for group 2. Furthermore, 
we denote n1 and n2 to denote the sample sizes of 
the two groups, where: n1 + n2 = n.
Further, we shall use e1 and e2 to denote the 
medians of the residuals in the two groups. The 
modified Levene test uses the absolute deviations 
of the residuals around their median, to be denoted 
by di1 and di2:

d e ei i1 1 1= −  , d e ei i2 2 2= − 
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With this notation, the two-sample t-test statistic 
becomes:

t d d

s
n n

L
* = −

+

1 2

1 2

1 1

Where d1 and d2 are the sample means of the di1 

and di2, respectively, and the pooled variance s2 is:

s
d d d d

n
i i2 1 1

2

2 2

2

2
=

− + −
−
∑∑ ( ) ( )

If the error terms have constant variance and n1 
and n2 are not too small, tL

*  follows approximately 
the t distribution with n-2° of freedom. Large 
absolute values of tL

* indicate that the error terms 
do not have constant variance.

TESTS FOR OUTLYING OBSERVATIONS

(i) �Elements� of� Hat� Matrix:� The� Hat� matrix� is�
defined as H=X(X X) X-1′ ′ , X is the matrix for 
explanatory variables. The larger values reflect 
data points are outliers.

(ii) �WSSDi: WSSDi is an important statistic 
to locate points that are remote in x-space. 
WSSDi measures the weighted sum of 
squared distance of the ith point from the 
center of the data. In general, if the WSSDi 
values progress smoothly from small to 
large, there are probably no extremely remote 
points. However, if there is a sudden jump in 
the magnitude of WSSDi, this often indicates 
that one or more extreme points are present.

(iii) �Cook’s Di: Cook’s Di is designed to measure 
the shift in ŷ when ith observation is not used 
in the estimation of parameters. Di follows 
approximately F p n p, − −( )1 (1-α). Lower 10% 
point of this distribution is taken as a 
reasonable cutoff (more conservative users 
suggest the 50% point). The cutoff for Di can 

be taken as 4
n

.

(iv) �DFFITSi: DFFIT is used to measure difference 

in ith component of ( )( )ˆ ˆ iy y− . It is suggested 

that DFFITS p
ni ≥
+



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2
1

1
2

may be used to 

flag off influential observations.

(v) DFBETAS j(i) : Cook’s Di reveals the impact of 

ith observation on the entire vector of the 
estimated regression coefficients. The 
influential observations for individual 
regression coefficient are identified by 
DFBETAS j pj i( ) , , ,...,= +1 2 1, where each 

DFBETAS j i( )  is the standardized change in bj 

when the ith observation is deleted.
(vi) �COVRATIOi : The impact of the ith observation 

on variance-covariance matrix of the estimated 
regression coefficients is measured by the 
ratio of the determinants of the two variance-
covariance matrices. Thus, COVRATIO 
reflects the impact of the ith observation on the 
precision of the estimates of the regression 
coefficients. Values near 1 indicate that the ith 
observation has little effect on the precision of 
the estimates. A value of COVRATIO >1 
indicates that the deletion of the ith observation 
decreases the precision of the estimates; a ratio 
<1 indicates that the deletion of the observation 
increases the precision of the estimates. 
Influential points are indicated by,

       COVRATIO
p
ni − >
+( )

1
3 1

TEST OF LINEARITY IN THE DATA

Testing whether a linear regression function is 
appropriate for the data being analyzed can be 
studied from a residual plot against the predictor 
variable or equivalently from a residual plot 
against the fitted values.
This is displayed as follows:
Figure 3 shows a residual plot against the predictor 
variable. Ideally, the residual plot will show 
no fitted pattern. That is, the red line should be 
approximately horizontal at zero. The presence of 
a pattern may indicate a problem with some aspect 
of the linear model. In this Figure 3 above, there 
is no pattern in the residual plot and the red line 
is approximately horizontal. This suggests that 
we can assume linear relationship between the 
predictors and the outcome variables.

Test of Normality of Residuals

Sometimes the error distribution is “skewed” by the 
presence of a few large outliers. Since parameter 
estimation is based on the minimization of squared 
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error, a few extreme observations can exert a 
disproportionate influence on parameter estimates. 
The best test for normally distributed errors is a 
normal probability plot or normal quantile plot 
of the residuals. These are plots of the fractiles of 
error distribution versus the fractiles of a normal 
distribution having the same mean and variance. 
If the distribution is normal, the points on such a 
plot should fall close to the diagonal reference 
line. A bow-shaped pattern of deviations from the 
diagonal indicates that the residuals have excessive 
skewness (i.e., they are not symmetrically 
distributed, with too many large errors in one 
direction). An S-shaped pattern of deviations 
indicates that the residuals have excessive kurtosis, 
that is, there are either too many or two few large 
errors in both directions. Sometimes the problem 
is revealed to be that there are a few data points 
on one or both ends that deviate significantly from 
the reference line (“outliers”), in which case they 
should get close attention. The QQ plot of residuals 
is used here to visually check the normality 
assumption. The normal probability plot of residuals 
should approximately follow a straight line. In our 
example, all the points fall approximately along 
this reference line, so we can assume normality.

Figure 4 displays the normal probability plot of 
residuals. The normal probability plot of residuals 
should approximately follow a straight line. In our 
Figure 4 above, all the points fall approximately along 
this reference line, so we can assume normality.

Test of Normality Shapiro–Wilk Normality 
Test

Shapiro–Wilk normality test is used in this study. 
Calculation of confidence intervals and various 
significance tests for coefficients is all based on 
the assumptions of normally distributed errors. If 
the error distribution is significantly non-normal, 
confidence intervals may be too wide or too narrow.
The normality analysis in the Table 1 shows that 
the residual values is normal because the p-value is 
>5% level of significance and therefore accept Ho.

Detection of Outliers and High Leverage 
Points

The presence of outliers may affect the 
interpretation of the model, because it increases 
the RSE. Outliers can be identified by examining 
the standardized residual (or studentized residual), 

Figure 3: Checking Linearity in the Data

Figure 4: Normality of Residual Plot
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Figure 5: Outlier Checking

Figure 6: Leverage Checking

which is the residual divided by its estimated 
standard error. Standardized residuals can be 
interpreted as the number of standard errors away 
from the regression line. Observations whose 
standardized residuals are >3 in absolute value are 
possible outliers. A data point has high leverage, 
if it has extreme predictor x values. This can be 
detected by examining the leverage statistic or 
the hat-value. A value of this statistic above 2(p + 
1)/n indicates an observation with high leverage;[1] 
where, P is the number of predictors and n is the 
number of observations.
The plot above in Figure 5 on outlier checking 
highlights the top 3 most extreme points (#40, #26 
and #16), with a standardized residuals higher 3. 
However, there are outliers that exceed 3 standard 
deviations.
In addition, in Figure 6 on leverage checking, 
there is high leverage point in the data. That is, 
some data points have a leverage statistic higher 
than 2 (p + 1)/n = 6/80 = 0.08.

Testing the Homoscedasticity Assumption

This assumption was checked by examining the 
scale-location plot, also known as the spread-
location plot.
Figure 7 shows if residuals are spread equally 
along the ranges of predictors. It is good if you 
see a horizontal line with equally spread points. 
In our Figure 7, this is the case. We can assume 
Homogeneity of variance.

Non-Constant Error Variance (NCV) Test

A further test was carried out using non-constant 
variance (NCV) test to determine whether the 
assumption of homoscedacity holds in the data. 
Table 2 below shows the result/output of the test.
The analysis in Table 2 is testing of 
homoscedasticity assumption. It shows that, there 
homoscedacity because P-value is >5% level of 
significance and therefore accept Ho.

Testing the Multicollinearity Assumption

Variance inflation factor for multicollinearity 
was tested using Farrar-Glauber test for 
multicollinearity. This is to ascertain the weather 
there is a collinearity between the two independent 

Table 1: Normality test
Test 
statistic 
(W)

P-value 
(p)

Null 
hypothesis 
(H0)

Decision

0.97052 0.06126 There is 
normality of 
residual

Accept H0 
(Residual is 
normal)
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Figure 7: Homoscedasticity Assumption Checking

Table 4: Durbin–Watson Test
Correlation 
value

Test 
statistic 
(D-W)

P-value 
(p)

Null 
hypothesis 
(H0)

Decision

0.0473677 1.882538 0.634 There is no 
correlation

Accept 
H0 (no 
correlation)

Table 2: Homoscedasticity assumption test using NCV 
statistic
Test 
statistic 
(X2) 

P-value 
(p)

Null 
Hypothesis 
(H0)

Decision

0.0196848 0.8884 There is 
homoscedacity 

Accept H0 
(homoscedacity 
exist)

Table 3: Collinearity test
VIF 1.008809 <3 No collinearity is detected 

by the test

Farrar Test 2.05 <3 No collinearity is detected 
by the test

Durbin 
WatsonTest

0.0473677 1.882538 0.634

variables (Mothers’ weights and mothers’ ages) or 
not. The results are given as follows.
Tables 3 and 4 above show the collinearity and 
Durbin–Watson Test. The result in Table 3 indicates 
in that there is no collinearity between the two 
independent variables since the values of both tests 
are <3. Furthermore, in Table 4, there is no correlation 
between the two independent variables due to its 
P-value higher than 5% level of significance.

CONCLUSION

The findings from the above preliminary 
investigation and diagnostics of assumptions/
deviation from the assumption give indications that 
data on weight of child at birth are dependent on his/
her mother weight or age during the birth. All the 

assumptions tested from the objectives (normality 
of residual, collinearity between the independent 
variable, outlier/leverage, and linearity of the model) 
are met and no one deviated from the assumptions 
of multiple linear regression fitted on the data.
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