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ABSTRACT

Through iterative procedures, our aim is to connect the different inequalities and fixed-point issues
arising from self, contractive and non-expansive mappings in Banach spaces in this communication. We
offer an iterative technique for resolving the fixed-point issues and various inequalities under study. We
demonstrate how well the suggested approach converges.

Keywords:Non-expansive mapping,Continuous mappings,Self mappings, Banach spaces,Fixed point
theory etc.

INTRODUCTION

Let T be the self-map defined on X in the metric space (X, D). Making the premise that the set of fixed
points for T is represented by F(T) ={z € X:Tz = z}. The sequence {x,}r-ofor x, € X. The Picard
iteration, defined as x,., € Tx,,n = 0, is used in mathematics. The sequence {x,};-o defines x,,; =
(1 —-a)x, + a,Tx,,n =0 for the value of {a,};—,.This sequence appears in (0,1). The Mann
iteration process [6] is denoted by the notation }.»°_, @,, = . In addition to studying iteration and fixed
point non-expansive mapping in Banach space in 1976, Ishikawa [4, 5] discovered fixed points using a
new iteration method.

In 2000, Noor [7] introduced the following iteration scheme for arbitrary chosen x; € C construct the

sequence {x,} by

Yn = (1- ﬁn)xn + BnTzy

Xn+1 = (1 - an)xn + anTYn}
Zn = (1 - Yn)xn + VuTxy

For all n = 1Where {a,,}, {B,,} and {y,,} are sequences in (0, 1).
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Later, in 2014, Abbas et al. [1] offered the iteration below, where a sequence {x,} is created from
randomly selected x; € C by

Xn+1 = (1 - an)Tyn + a,Tz,
Yn = (1 - lgn)Txn + ﬁnTZn
Zn = (1- yn)xn + vuTxy

Definition 1.1 Let H be a non-empty subset of X, a Banach space. Let T once more be the self-map
established on X. Consequently, T is said to mean non-expansive if |[Tu— Tv| <pllu—v| +
qllu —Tv|| Vu,v € Hand p,q:p + q < 1. The inverse of this relation, that is, that a mean non-expansive
mapping may not be a non-expansive mapping, is often untrue. Every non-expansive mapping is a mean
non-expansive mapping with p = 1and q = 0. We have thought about the generalized version of mean
non-expansive mapping by taking into account ||[Tu — Tv|| < pllu —v|| + qllu — Tv|| V u,v € Hand
pq:p+tqg<l

Definition 1.2 For some initial approximation x, € H consider the following sequence

X, +
x‘l’l+1 =T( nzyn)l
X, +
ynz(l—an)xn+anT( nZJ’n)’

X,is the initial approximation such that x, € H and {a,, };=o € [0, 1].

Definition 1.2 For some initial approximation x, € H consider the following sequence

X, +
xn+1 =T( nzyn)l

yn=(1—6)xn+6T(

xn + Yn)
X,is the initial approximation such that x, € H and & € [0, 1]. The definitions of the rate of convergence
that follow are credited to Berinde [2].

Definition 1.3 Let {a,} and {B,,} be two sequences of real numbers converging to « and S respectively.
a

If lim

n—->oo

n:;” = 0, then {a,,} converges faster than {3,,}.

n

Definition 1.4 Suppose that for two fixed-point iteration processes {u,, }and {v,,}, both converging to the
same fixed point w, the error estimates ||lu,, — w|l < p,, and ||v,, — w|| < q,, for all n > 1, are available
where {p,} and {q,,} are two sequences of positive numbers converging to zero. If {p,;} converges faster
than {q,,}, then {u, } converges faster than {v,} to w.

Lemma 1.5 [3] Let C be a non-empty closed convex subset of a uniformly convex Banach space E, and
T a non-expansive mapping on C. Then, 1 — T is demiclosed at zero.

Lemma 1.6 [8] Suppose C be a uniformly convex Banach space and 0 <p <t, <qg <1 foralln€eN.
Let {u,} and {v,} be two sequences of C such that limsup||u|| < r also we have limsupl||v,|| < r and

k—oo k—oo

limsup||t,u, + (1 =t vl =7 holds for  some r>0. Then, ’lim llur, — v ll = 0.

k— oo

RESULTS
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Theorem 2.1 If K be any non-empty subset of a Banach space X and T be the self-map on K satisfying
the non-linear ||[Tu — Tv|| < |lu — v|| — ml||x — Ty|| and iterative scheme for the sequence {u, };~, given
by w, = (1 —1)u, + 7. Tu,, v, = Tw, also u,,; =Ty, with 0 <{w,} <1 and X7, 7, = . Then
show that the inequality

ltrsr = sll < (1 = m)2T*DJug — s|I[Th=o (1 — m)
Proof: Assume that s € F(T). So, from the given criterian we get
lwy = sll = (1 = 7 )u, + 7 Tu, — sl
< (A -t)lluy = sl + 7 lITu, — sl
< @ —-t)lluy = sl + 7 lluy = sll = mllu, — Tsl|

<A-1.+71 —1,5]|u,—Ts|

lwy = sll < (1 = 7-s)llu, — sl
Also, llv, — sll = [ITw,. — sl

i.e.llv, —sll < (1 —s)lw, — sl
Hence, from the above two inequalities we achieve

lv, —sll = (1 —mz,.)(1 — m)|lu, — sl
Therefore, |[uypqy — sl = [ITv, — sl
Lelluryr —sll < (@ —m)ITv, — sl
From the above two inequalities, we achieve
lursr = sll < (1 =m)*(1 — mz,)llu, — sl
Hence, from the above two inequality we estimate
lursr = sll < (1 =m)*(1 — mz,)llu, — sl
llu, —sll < (1 —=m)*(1 — mr,— ) lluy—q — sl
lu,—y —sll < (A —m)?(1 — mr,_ )|y —sl|......... by applying similar argument we achieve
lluy = sll < (1 —=m)?(1 — mry)lluy — sl

Thus, luysq — sl < (1 —m)2CD ||y — s|I[TR, (1 — mty)
Hence, the required inequality.

Limiting case: But, 7, € [0,1] Vr € N,m € [0,1). Now, applying the limiting criteria n approaches to
co. We achieve lim ||lu,,, — s|| = 0, from the above inequality and hence, {u,};>, converges to a fixed
T—>00

point s of T.
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Theorem 2.2 Let K be a closed, convex subset of a real normed linear space X and T be a self and

Yllu-Tul|+b|lu—v|| "
1+kllu—Tu| Let {ur}r=0 be the

contraction mapping on K satisfying the criterion ||Tu — Tv|| <

sequence generated by the iterative processes

v = (= tuy +,7 (5),
[0,1]. Also,

Uyis the initial approximation such that u, € K and {z,.};2, €

_ Up+Vy
uny =T (*57),

v, =(1-8)u, + 6T (“r“’r),

2

U, is the initial approximation such that u, € K and 6 € [0, 1]

respectively with sequence {w;.};=, € [0, 1]. Then show that the inequality

p

pyTHL l—-7.+1.5

lirss =l < (5) T = sl {1+ ———5=
1 _Trf

Proof: Suppose thats be the fixed point of the mapping T. Then by using the first iterative process, we
have

U, + v, || U, + v, p p
U, —S|| = 5| = =sl|<sllu—sll+5llv, —s
luy = sll = |- . >y = sl + S llv, sl
rtVr
Now, v, —s|| = ”(1 —w)u, + 7, T (%) -5 |

u, + v.
T( — r>_5”

u, +v
< (=l =5l + 5 () ]

< (1 - Tr)”ur - S” + Ty

p p
< (1_7:1')””1' _S” +Tr2”ur _S” +Tr5”vr _S”

. p p
l-e-(l _Trz) ”Ur _S” < ”ur _S” +Tr”ur _S” +Tr5”ur _S”

o
l—7.+17.5
. p rtTr
i-e sy = sll <5914+ ———52 tlu, s
_T_
"2
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1- ‘L'r+‘L'r2

in the same manner we can claim |lu, —s|| <% {1 + }Ilur 1 — s|| ... and hence the last normed

Tz

. . . . —Tr+Tr
linear factor will be ||u,; — s|| and which is less than or equal to = {1 + i 2} lluy — s||. combining all
Tz
B . p r+ 1 —Tr+Tyo .
inequalities, we get ||u,,, — s|| < (5) ||ur - s 2, { — 2} .This completes the proof.
2

Limiting case: Now, Applying the limiting criteria n approaches to c. We achieve lim ||u,,, — s|| = 0,
T—00
from the above inequality and hence, {u, };%, converges to a fixed point s of T.

Example 2.3 Assuming T(u) = % let K and T: K — K be a contraction mapping. Consider the following

iteration methods with the initial approximations u, = 0.1and {z,.} = % :

v = (A= tu, + 1,7 (57),
[0,1]. Also,

uyis the initial approximation such that u, € K and {z,.};2, €

_ U+
ur =T (57),

U, is the initial approximation such that u, € K and 6 € [0, 1]
=(1-8)u, + 6T (”T*"T),

respectively with sequence {w,.};=, € [0, 1].We notice that, for both iterative techniques, {u,} converges
at zero in the 28" approximation, indicating an equivalent rate of convergence.

Theorem 2.4Let K be a non-empty, closed and convex subset of uniform convex Banach space (UCBS)
X. Also T be a non-expansive self mapping on K and {u,} be a sequence defined such that
Uppr = (1 —6,)Tv, + 6, Tw,
v, = (1 — @ )w, + @, Tw, ;where {0,},{¢,} and {w,} are real sequence in (0, 1). Also, F(T) # @.
w, = (1 - w)u, + 0, Tu,

Then show that the inequality [[S, mx — Spmy| < [HL = 1] [lx =yl + X1 plvx,y € C.

Proof: Letting, hmIIur — s|| = cand limsup||v, — s|| < ¢, limsup||lw, — s|| < c. Here, T be a non-

T—00 T—00
expansive self-mapping on K. So, ||[Tu, —s|| < llu, —sll, ITv, — sl < llu, —sll, and [ITw, —s|| <
|lu, — s||. Taking limsup on both sides, we achieve the results limsup||Tu, — s|| < ¢, limsup||Tv, —
T—00 T—00

s|l < ¢, and limsup||Tw, — s|| < c.

T—>00

Since ¢ = lim||lu,4; — s|| = lim||(1 — 6,)Tv, + 6, Tw, — s||
T—00 r—0oo
Ofcourse, we can modify the iteration scheme
¢ = lim||u,4; —s|| =1lim||(1 — 6,)Tw, + 6, Tv, — s||
T—>00 T—00
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< limfl(1 = 6)(Tw, — ) + 6, (Tv, — )l
< im[(1 = 6)ITwr — sl + 6, 1I(Tvr — $)lI]
< lim{(1 = 6)ITur = sll + 6| (Tur — 5]

= lim [|Tu, — sl

But, lim ||Tw, — Tv,|| = 0
T—00

Now, ”ur+1 - S” = ”(1 - er)TWr + erTvr - S” < ”TWr - S” + Qr”TWr - Tvr”

Hence, ¢ < lim inf]||Tw, — s||
n—->oo
Thus, lim ||Tw, — s|| = ¢
n—-oo
On the other hand, we have

”TWr - S” < ”TWr - Tvr” + ”Tvr - S” < ”TWr - Tvr” + ”vr - S”

and this gives us ¢ < lim infl||v, — s]|
n—->o0o
lim||lv, —s|| =c¢
n—->oo
Using lemma 1.6, we get lim |lw, — Tw, || =0
n—-o0o

Since, [lv, = sll < llwy = sll + @, ITwy — wi |l

we write, ¢ < 711_{{)10 sup|lw, — s||
then, |lw, — s|| = cso,c = %i_g)lollwr — s
= limll(1 = 6, ) +6,Tu, = s|
= liml|(1 = ) (y = 5) + 6, (Tw, = )]

Now, setting a,.(t) =lltu, + (1 —-t)v, —v,l, mneN then a.(0)=Ilim|v; —v,|]| and

T—00
a,(1) = lim||u, — v,|| exists. Hence, it is sufficient to show that the above expression is true for t €
T —00
(0,1).

Taking Spm = GomGrim—z -GV, m € N. Then, up m = SpmUn,Spm? =V V Nuey F(G,) and

|Snmtt = Spmv|| < [l'[ Lj;:l"_l] [llu — v|| + ™1 p,]v u, v € K andthis is our desired inequality.

Limiting case: and by Lemma 1.6, we achieve lim [|lu, — Tu,|| = 0.
T—00
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Example 2.5 Suppose K = [1,50]and X = R. Let T: K — K be a mapping with the definition given by
T(u) = Vu? —9u + 54 for all u € K. Select 0, = ¢, = w, = %, with u; = 30 as the beginning value.

Then, using the aforementionediteration methods, we see that, in the 415t approximation, {u,.} converges
at 6, for both iterative schemes, indicating an identical rate of convergence.
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