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ABSTRACT 

 
When selecting a method to evaluate theories about the relationship between two variables that have a 

unit root or, it is necessary to consider the potential existence of cointegration. If the relationship exists 

between the two variables, it should be able to forecast one variable based on the other, which is why 

cointegration is significant for time series data including many variables. Using the three approaches, this 

research investigates the cointegration processes and integration level. Determine whether the time series 

is stationary and if there is a seasonal effect before looking at cointegration in a combination of variables. 

A time series plot is used to monitor patterns and the time series data's behaviors. Applying the log 

transformation and differencing approach will make the data stationar. The data was then subjected to the 

Augmented Dickey Fuller (ADF) test, which verifies whether or not a unit-root exists by following a 

unit-root procedure. In the event that the series lacks a unit root process, the data may be considered 

stationary. The analysis techniques used in the research include the Granger Causality Test, Johansen test, 

Phillips-Ouliarisco integration test, Engle–Granger two-step method, and simple correlation and 

regression analysis. R statistical software was used for all of the analyses on a time series data set 

containing these variables. In conclusion, the results of the three tests indicate cointegration, with the 

Phillips–Ouliaris test being the most effective whether the sample size is small, medium, or big, 

respectively, for both normal and gamma distributions. Engle–Granger and Johansen tests are then 

optimal. Additionally, it was noted that as correlation confidence levels rose, so did the strength of the 

determination of the cointegration across the correlation. 

 

 

Keywords: Unit root, Cointegration, Simulation, Integrating order 

 

INTRODUCTION 

 
Cointegration is important in time series data that involve more than one variable due to the fact that if 

relationship between two variables holds, it is possible to predict one from another, that is, for example, if 

markets move together in the long-run, this hypothesis will hold (Akeyede et al, 2018)(1). Cointegration is 

a statistical property associated with a collection of time series variables (𝑋1, 𝑋2, … , 𝑋𝑘). First, all the 
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series must be integrated with order d, and if a linear combination of this collection is integrated of order 

less than d, then the collection is said to be co-integrated. Formally, if (𝑋, 𝑌, 𝑍) are each integrated with 

order d, and there exist coefficients 𝑎, 𝑏, 𝑐 such that 𝑎𝑋 +  𝑏𝑌 +  𝑐𝑍  is integrated with order less than d, 

then 𝑋,  𝑌, 𝑎𝑛𝑑 𝑍 are said to be cointegrated (Adeleke et al; 2018)(2). 

Invariably, if two or more series are individually integrated (in the time series sense) but some linear 

combination of them has a lower order of integration, then the series are said to be cointegrated. A 

common example is where the individual series are first-order integrated 𝐼(1)but some (cointegrating) 

vector of coefficients exists to form a stationary linear combination of them. For instance, a stock market 

index and the price of its associated futures contract move through time, each roughly following 

a random walk. Testing the hypothesis that there is a statistically significant connection between the 

futures price and the spot price could be done by testing for the existence of a cointegrated combination 

of the two series (Born and Demetrescu, 2015)(3). 

Cointegration is an important property in contemporary time series analysis which often have either 

deterministic or stochastic trends. Kasa, 1992(4) provided statistical evidence that many US 

macroeconomic time series like GNP, wages, employment, etc. have stochastic trends. Cointegration has 

many implications for both financial theory and for portfolio management of the individual investor. 

Cointegration has also implications on the individual investor, in order to hedge risk, investors diversify 

their portfolios by investing in assets traded in different categories. If cointegration between variables is 

present, their indices will behave in a similar way in the long-run and give similar returns (French and 

Poterba, 1991(5); Richards, 1995(6)). 

 

METHODOLOGY 

 

This paper examines the cointegration procedures and level of integration using the three methods. 

Before examining cointegration in combination of variables, it is necessary to identify whether the time 

series is stationary and whether it has any seasonal effect. Time series plot is used to track trends and the 

behaviors of the time series data. The stationarity of data can be achieved by applying differencing 

method and log transformation. Augmented Dickey Fuller (ADF) test was then applied to conform the 

stationarity of data, this test follows a unit-root process and the test indicates whether unit-root exist or 

not. If the series does not have a unit root process, the data can be taken as stationary. The paper employs, 

simple correlation and regression analysis, Engle–Granger two-step method, Johansen test and Phillips–

Ouliariscointegration test as well as Granger Causality Test as methods for analyses. All the analyses 

were carried out for a time series data with these variables using R statistical software. 

 

1.1 Source of Data 

 

Data used for this paper was fully simulated from the most commonly continuous distribution that are 

generally related to real life situations. The distributions to considered in this paper are the Normal and 

Gammadistributions. The simulation was carried out for 3 sample sizes. The data was generated from 

different variables and non-stationarity was imposed on every data generated such that it has to be 

integrated once, twice or three times before it attains a stationarity status. In every case, the test of non-

stationarity (ADF test), was applied to ensure the status on every data generated before the level of 

cointegration between the variables is checked. This was assessed based on the underline distribution at 

every sample size.  

 

1.2 Parameter and Sample Size Fixed for Simulation. 

 

Parameter was fixed for every stage of simulation in such a way that the assumption of stationarity in 

terms of parameters will be violated. Using systematic sampling, the sample sizeconsidered for every 

case of simulation are 30, 60 and 90 to ensure the performance of different methods of cointegration test 

from small sample sizes to large sample sizes. 
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2.3 Method of Analysis    

 

Each of the three tests of cointegration (Engle–Granger two-step method, Johansen test and Phillips–

Ouliariscointegration test) was used to analyze the simulated data from normal, exponential, gamma and 

uniform distribution at different sample sizes. The number of times a test wrongly rejects the two-

hypothesis fixed (type I error) was counted and recorded in tables. More so, the number of times a test is 

accepting true alternative hypothesis values (power) was also counted and recorded. These was repeated 

for all the test statistics under study on each simulated data and sample size. 

 

2.4 Criteria for Assessment 

 

The test with the lowest type I error and/or highest power was classified as the most robust test to a 

distribution at a particular sample size. The robustness of the tests was measured based on type I error 

(proportion of a test in rejection of a fixed cointegration) and power of the test (proportion of a test in 

rejection of a fixed cointegration) using p-values. The one with lowest type I error and highest power was 

considered as the robust test. Other Criteria that was used are adjusted R and integrated order.  

 

2.5 Concept of Stationarity and Unit Root 

 

It is important to distinguish between stationary and non-stationary time series, as well as weak and strict 

stationarity. This is relevant for cointegration analysis between related variables, as we expect some set of 

similar data to be non-stationary. A time series is considered strictly stationary if the probability 

distribution of its values does not change over time as shown in the equation below (Brooks, 2008) (7): 

 

f(yt1, yt2, … , ym) = f(yt1+k, yt2+k, … , ytm+k) 

 

The concept of strict stationarity implies that all higher-order moments are constant, including mean and 

variance. However, strict stationary time series are rarely found in practice. Therefore, the study will 

focus on weakly stationary processes in further analysis. Conditions and assumptions of weak stationary 

processes are sufficient to be regarded as stationary. A time series is considered weak stationary when 

mean, variance and autocovariance are constant over time (Enders, 2008)(9). 

 

On the other hand, the properties of non-stationary time series change over time. For this type of time 

series, mean and variance have different values at different time-points. Its variance will increase as 

sample size tends to infinity (Harris and Sollis, 2003)(9). 

 

The stationary conditions can simply be shown by using a simple autoregressive (AR) process: yt = μ +
ρyt−1 + et 

where the current value of variable ytdepends on the constant term μ, value of the variable y from last 

period t-1 and an error term et . The interest is in the value of ρ which indicate whether the process is 

stationary or non-stationary.  

 

There are three possible cases that could occur, or three possible values of ρ, (Brooks, 2008)(7): 

 

i. │ρ│ <  1; a shock to the system in current time period t is temporary; it will die away over time 

and this series is stationary. It has constant mean, variance and autocovariance. A stationary time 

series will return to its mean value in the long run. 

ii. ρ =  1; a shock in time period t which will not die away over time, it is permanent and its 

variance approaches infinity over time. This time series is regarded as non-stationary, better 

known as the unit root case. The variable y contains a unit root. 

iii. ρ >  1; a shock in time period t will explode over time and this sort of time series is also non-

stationary. There is no mean reversion to its true value over time.  
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2.6 Augmented Dickey – Fuller Test (ADF Test) For Unit – Root 

 

The ADF test is used to test for unit root, the testing procedure for the ADF test is the same as for the 

Dickey-Fuller test but it is applied to the model. A random walk a stochastic or random process, that 

describes a path that consists of a succession of random steps on some mathematical space such as the 

integers. A random walk with drift and trend is represented as;  𝑌𝑡 = 𝛼 + 𝑌𝑡−1 + 𝛽𝑡 + 𝑒𝑡 

where α is a constant, 𝛽 the coefficient on a time trend and 𝑒 the lag order of the autoregressive process. 

Imposing the constraints 𝛼 = 0 and 𝛽 = 0 corresponds to modelling a random walk and using the walk 

with a drift. 

The test statistic, value is calculated as follows: 𝑡 =
�̂�

𝜎�̂�
 

 

whereŶ is the estimated coefficient and 𝜎Ŷ is the standard error in the coefficient estimate. 

 

The null – hypothesis for an ADF test: Ho: ϒ = 0 Vs H1 : ϒ < 0  

 

Where Ho: is the null hypothesis (has unit root) and H1: Does not have unit root. The test statistics value t 

is compared to the relevant critical value for the Dickey-Fuller test. If the test statistic is less than the 

critical value, we reject the null hypothesis and conclude that no unit – root is present. The ADF test does 

not directly test for stationarity but indirectly through the existence (or absence) of a unit – root. 

Decision rule: 

 

If t*> ADF critical value = do not reject null hypothesis, that is, unit root exists.  

If t*< ADF critical value = reject null hypothesis, that is, unit root does not exist. Using the usual 5% 

threshold, differencing is required if the p – value is greater than 0.05. 

 

2.7  Concept of Cointegration 

 

The concept of cointegration has its roots in the work of Engle and Granger (1987)(10). Two variables are 

cointegrated if they share a common stochastic trend in the long-run. The general rule when combining 

two integrated variables is that their combination will always be integrated at the higher of the two orders 

of integration. The most common order of integration in time series is either zero or one (Brooks, 

2008)(7); 

 

1. If 𝑦𝑡 ~𝐼(0), 𝑎𝑛𝑑 𝑥𝑡~𝐼(0)𝑦𝑡  ~ 𝐼(0), then their combination 𝑎𝑥𝑡 + 𝑏𝑦𝑡will also be 𝐼(0). 

2. If 𝑦𝑡 ~𝐼(0), 𝑎𝑛𝑑 𝑥𝑡~𝐼(0), then their combination 𝑎𝑥𝑡 + 𝑏𝑦𝑡 will now be 𝐼(1), because 𝐼(1) is 

higher order of integration and dominates the lower order of integration 𝐼(0), 

3. If 𝑦𝑡 ~𝐼(1), 𝑎𝑛𝑑 𝑥𝑡~𝐼(1), then their combination 𝑎𝑥𝑡 + 𝑏𝑦𝑡  will also be 𝐼(1), in the general case. 

 

However, if there exists such linear combination of non-stationary variables 𝐼(1) that is stationary, 𝐼(0), 

cointegration between those variables exists. The following regression model includes two I(1) non-

stationary variables 𝑦𝑡and 𝑥𝑡:yt = μ + βxt + et 

 

If the OLS estimate is such that the linear combination of 𝑦𝑡and 𝑥𝑡stationary, these two variables are 

cointegrated. The error term between them is constant over time (stationary):et = yt − βxt 

In order for two variables to be cointegrated they need to be integrated of the same order. For example, if 

one variable is 𝐼(0) and the other one is 𝐼(1), they cannot be cointegrated. The highest order of 

integration of the two variables will dominate and cointegration will not exist. However, if there is a 

linear combination of the stock indices that is stationary, cointegration between them exists.  

 

2.8 The Engle-Granger test 

 

The Engle-Granger test is a single-equation method used to determine whether there is a cointegrating 

relationship between two variables (Engle and Granger, 1987)(11). The precondition to examine 
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cointegration is that the variables are both non-stationary and integrated of the same order. The Engle-

Granger (EG) method can be performed by following the next four step procedure: 

 

Step 1: Perform the ADF test as demonstrated in 3.1.1 to pretest for the order of integration. If the 

variables are both 𝐼(1), cointegration is theoretically possible and we can proceed to step 2. If the 

variables are of different order, the conclusion is that cointegration is not possible. 

Step 2: Estimate the long-run, static relationship or equilibrium by running the OLS regression on the 

general equation: yt = μ + βxt + et) 

 

This equation can be expanded with a constant term and a time trend, If the variables are cointegrated, an 

OLS regression will give a “super-consistent” estimator, denoted as β̂, implying that the coefficient βwill 

converge faster to its true value than using OLS on stationary variables, 𝐼(0). If there is a linear 

combination of variables 𝑦𝑡 and 𝑥𝑡that is stationary, the variables are said to be cointegrated. This linear 

combination of the variables can then be presented with the estimated error term; êt = yt − β̂xt  

 

Step 3: Store the residuals êt and examine whether they are stationary or not. Here an ADF test, as 

explained earlier, is performed on the saved residuals from every regression equation above. The 

hypotheses for the EG test for cointegration are: 

 

H0: êt − I(1) − non − stationary residual and nocointegration between variables 

H1: êt − I(0) − stationary residual and cointegration between variables 

 

If the null hypothesis is rejected, the variables from the model are cointegrated. The test statistics is the 

same as the one used for the ADF test, but the critical values are different. Since the Engle-Granger 

method includes testing on estimated residuals ( êt) instead of the actual values, the estimation error will 

change the distribution of the test statistics. Therefore, the critical values used in an Engle-Granger 

approach will be larger in absolute value, or more negative compared to those used in a DF or ADF test. 

This means that the magnitude of the test statistics must be much larger in order to reject the null 

hypothesis, compared to the usual DF critical values. Akeyede et al, (2018)(1) provide appropriate critical 

values for residual-based cointegration testing, depending on whether and which deterministic terms are 

included in the model. 

 

Step 4: If cointegration is found between the variables, estimate an error-correction model. However, this 

will not be part of our analysis, since we are interested only in detecting cointegration. 

 

Johansen Test 

The Johansen test is a test for cointegration allows for more than one cointegrating relationship, unlike 

the Engle–Granger method, this test is subject to asymptotic properties, i.e. large samples. If the sample 

size is too small, then the results will not be reliable and one should use Auto Regressive Distributed 

Lags. 

 

 

Phillips–OuliarisCointegration Test 

Phillips (1986)(11) show that residual-based unit root tests applied to the estimated cointegrating residuals 

do not have the usual Dickey–Fuller distributions under the null hypothesis of no-cointegration. Because 

of the spurious regression phenomenon under the null hypothesis, the distribution of these tests has 

asymptotic distributions that depend on; 

1. The number of deterministic trend terms and. 

2. The number of variables with which co-integration is being tested. 

These distributions are known as Phillips–Ouliaris distributions and critical values have been tabulated. 

In finite samples, a superior alternative to the use of these asymptotic critical value is to generate critical 

values from simulations. 
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RESULTS AND DISCURSIONS 

 

The data obtained at every category were analysed to check if the data is stationary or has a unit root 

using Augmented Dickey Fuller (ADF), and therefore check for cointegration among the variables using 

Engle Granger method, Johansen test and Phillips–Ouliariscointegrationmethods for analyses.  

 

3.1 Testing for Unit Root/ Stationarity in the Generated data  

 

The stationarity/unit root test was carried out on data whose error terms are generated from normal, 

exponential, gamma and uniform distributions using Augmented Dickey Fuller (ADF). The statistic tests 

the null hypothesis that the data series has a unit root with the alternative that the data series is stationary.  

 

Table 1: Results of Unit Root Tests on the Two Generated Data Sets  

Variable Sample 

Size(T) 

First Variable (X) Second Variable (Y) 

Distribut

ion 

Sample 

Size 

Values Lag 

Order  

P-value Remark Values Lag 

Order  

P-value Remark 

 

Normal 

30 -3.2391 3 0.0989 N/S -3.128 3 0.1391 NS 

60 -2.8138 3 0.2458 N/S -2.288 3 0.4584 NS 

90 -4.4813 3 0.01 N/S -3.138 3 0.0985 NS 

 

Gamma 

30 -24.134 9 0.01 N/S -16.45 9 0.01 NS 

60 -9.7953 9 0.01 N/S -5.810 9 0.01 NS 

90 -8.352 9 0.01 N/S -9.179 9 0.01 NS 

NS implies Not Stationary 

 

Table 1 shows the unit root test of the set of data simulated under different underlined distributions, 

normal and gamma distributions at sample sizes of 30, 60 and 90 respectively which small, moderate and 

large sample sizes. It was observed from the table that most of the p-values from normal distributions 

except for gamma distribution are greater than 5% and therefore accept the null hypothesis of data 

generated being have a unit root except those that generated with error term being normal.Therefore, the 

data series need to be differenced and differenced data are hereby carried out in the following section. 

 

Table 2: Results of Unit Root Tests on the Two Sets of Data (Differenced Data)  

Variable Sample 

Size 

(T) 

First Variable (X)   Second Variable (Y) 

Distribution Sample 

Size 

Values Lag 

Order  

P-value Remark Values Lag 

Order  

P-

value 

Remark 

 

Normal 

30 -16.30 9 0.01 NS -15.59 9 0.01 NS 

60 -15.04 9 0.01 NS -10.95 9 0.01 NS 

90 -13.24 9 0.01 NS -12.26 9 0.01 NS 

 

Gamma 

30 -11.21 9 0.01 NS -18.67 9 0.01 NS 

60 -17.15 9 0.01 NS -20.36 9 0.01 NS 

90 -15.26 9 0.01 NS -16.94 9 0.01 NS 

NS implies non stationary 

 

Table 2 above shows the ADF test for the differenced generated data at different sample sizes and other 

category of investigation with the null hypothesis of a unit root against an alternative of a level 

stationarity. The p-values of all cases of simulated data are less than the 1% level of significance which 

indicate that, the null hypothesis of having a unit root series should be rejected in favour of alternative of 

being stationary. Therefore, the differenced data series are considered to be stationary. We therefore 

proceed to determine the long run relationship between the variables using co-integration technique. 
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3.2 Cointegration Tests Comparison  
Using the Eagle-Granger method, Johansen test and Phillips–Ouliaris cointegrationmethods, a pairwise 

analysis of two variables with different strength of relationship are carried out using the procedures for 

testing cointegration. We tested whether a linear combination of a pair variable is stationary. If it is found 

to be stationary, the two data set are cointegrated.  

The performances of three tests of cointegration mentioned in section 2 are studied and compared when 

error term is distributed normal, gamma and  This is carried out from low to high strength of correlation 

(𝑟 =  0, 0.3 ,0.6, ,0.9) between the pair of variables at different sample sizes. 

 

Table 3: Results of Cointegration Test when Error Term is Normal (T = 30) 

Test Eagle-Granger Johansen test Phillips–Ouliaris 

r Test 

Value 

P-

value 

Adjusted 

R-squared 

Test 

Value 

P-

value 

Adjusted 

R-squared 

Test 

Value 

P-

value 

Adjusted 

R-squared 

0 0.2183 0.186 0.2182 1229.9 0.0141 0.4534 1057.7 0.0232 0.3966 

0.3 0.177 0.1938 0.1937 742.53 0.0392 0.2348 665.83 0.0392 0.3899 

0.6 0.052 0.0585 0.0585 701.33 0.0094 0.1475 454.5 0.0283 -0.5097 

0.9 0.175 0.2381 0.2381 642.53 0.0078 0.1439 353.31 0.0021 0.5867 

 

Table 3 shows the relative performance of Eagle-Granger, Johansen test and Phillips–Ouliaris in 

determining the cointegration of the pair of the data generated at different levels of correlations between 

the two variables when the sample size is 30. It was observed that, both Johansen test and Phillips–

Ouliaris reject the hypothesis of no cointegration due to their p-values less than 5% while Eagle Granger 

do not reject the hypothesis. Hence, there is no cointegration based on Eagle Granger, whereas, there is 

cointegration based on the other two tests. It was also observed that the strength of determining the 

existence of the cointegration across the cointegration decreases as the levels of the correlation increases 

with Phillips–Ouliaris as the best and has the best fit as indicated by R2 at all levels followed by Johnsen 

test. 

 

Table 4: Results of Cointegration Test when Error Term is Normal (T = 60) 

Test Engle-Granger Johansen test Phillips–Ouliaris 

R Test 

Statistics 

P-

value 

Adjusted 

R-squared 
Test 

Statistics 

P-

value 

Adjusted 

R-squared 
Test 

Statistics 

P-value Adjusted 

R-squared 

0 14.052 0.0034 0.8695 959.04 0.0250 0.5690 669.17 0.0029 0.5726 

0.3 12.621 0.0039 0.2818 782.99 0.0320 0.5002 1950.8 0.0006 0.7433 

0.6 13.978 0.0039 0.2092 710.22 -0.032 0.5007 906.11 5.06e-5 0.7501 

0.9 8.096   0.0041 0.2668 535.49 0.0446 0.4897 950.26 2.2e-5 0.7444 

 

Table 4 presents the results of the three tests in determining the cointegration of the pair of the data 

generated at different levels of correlations between the two variables when the sample size is 60. The 

results in table 4.4 shows that all the three tests reject the hypothesis of no cointegration due to their p-

values less than 5% in favour of the alternative that there is cointegration. Therefore, there is 

cointegration based on the three tests. However, the strength of determining the existence of the 

cointegration across the correlation levels decreases as the levels of the correlation increases by Engle-

Granger and Johnsen tests. Phillips–Ouliaris seems to be the best as indicated by p-values and R2 at all 

levels followed by Engle-Granger at this category. 

 

Table 5: Results of Cointegration Test when Error Term is Normal (T = 90) 

Test Engle-Granger Johansen test Phillips–Ouliaris 

r Test 

Statistics 

P-

value 

Adjusted 

R-squared 
Test 

Statistics 

P-

value 

Adjusted 

R-squared 
Test 

Statistics 

P-value Adjusted 

R-squared 
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0 13.385 0.0022 0.5024 889.83 0.0398 0.4782 744.01 0.994 -0.00101 

0.3 5.681 0.0031 0.5777 585.10 0.0394 0.4115 1154.7 2.186e 0.0558 

0.6 4.200 0.0033 0.5776 337.14 0.0450 0.4105 629.42s 2.2e 0.6637 

0.9 4.015 0.010 0.5774 470.91 0.0514 0.4200 850.27 2.2e-16 0.2197 

 

The relative performance of Engle-Granger, Johansen test and Phillips–Ouliaris in determining the 

cointegration of the pair of the data generated at different levels of correlations between the two variables 

when the sample size is 90 are shown table 5. All the three tests reject the null hypothesis of no 

cointegration and accept the alternative. Hence, they all show that cointegration exists. However, 

Phillips–Ouliaris has the best performance and is also observed that the strength of determining the 

existence of the cointegration across the correlation levels, decreases as the levels of the correlation 

increases. 

 

Table 6: Results of Cointegration Test when Error Term is Gamma (T = 30) 

Test Engle-Granger Johansen test Phillips–Ouliaris 

R Test 

Statistics 

P-

value 

Adjusted 

R-

squared 

Test 

Statistics 

P-value Adjusted 

R-

squared 

Test 

Statistics 

P-value Adjusted 

R-squared 

0 13.721 0.0058 0.3131 464.08 5.48e-05 0.2356 74.806 1.9e-03 0.2852 

0.3 16.483 0.0001 0.3745 494.24 6.92e-07 0.3421 998.74 1.9e-03 0.3411 

0.6 895.36 0.0001 0.4518 895.36 1.23 e-08 0.3765 995.93 1.9e-03 0.4341 

0.9 895.36 0.0010 0.4918 913.75 1.97e-07 0.4412 1023.3 1.9e-03 0.4264 

 

Table 6 shows the three tests of cointegration when the error term is distributed gamma. The test 

statistics, p-value and R2of each test are recorded at all levels of correlation of the pair variable. It was 

observed that Johansen testperformed more than others in determine the cointegration between the pair 

variable at various correlation levels due to its smallest p-values. This followed by Phillips–Ouliaris. The 

performance of all the three tests improves as correlation level increases based on the p-vale and R2. 

 

Table 7: Results of Cointegration Test when Error Term is Gamma (T = 60) 

Test Engle-Granger Johansen test Phillips–Ouliaris 

r Test 

Statistics 

P-

value 

Adjusted 

R-squared 
Test 

Statistics 

P-

value 

Adjusted 

R-

squared 

Test 

Statistics 

P-value Adjusted 

R-squared 

0 0.033 0.0001 0.1411 869.29 0.0093 0..1097 927.43 1.5e-07 0.02634 

0.3 13.945 0.0001 0.2594 883.42 0.0075 0.1175 1365.74 1.5e-10 0.0010 

0.6 13.822 0.0001 0.3412 451.98 0.0055 0.4586 829.93 2.2e-16 0.9915 

0.9 12.585 0.0001 0.4294 471.18 0.0009 0.4598 66.704 4.4e-07 0.02432 

 

The table 7 reveals the relative performance of the cointegration term when the error term is generated 

from gamma distribution and sample sizes is 60. The results show that the Phillips–Ouliaris is the best at 

various correlation levels followed by Engle-Granger. The performance of the three tests improve as 

correlation level increases. 

 

Table 8: Results of Cointegration Test when Error Term is Gamma (T = 90) 

Test Engle-Granger Johansen test Phillips–Ouliaris 

R Test 

Statistics 

P-

value 

Adjuste

d R-

squared 

Test 

Statistics 

P-

value 

Adjuste

d R-

squared 

Test 

Statistics 

P-value Adjusted 

R-

squared 

0 6.591 0.0001 0.41054  436.017 0.0086 0.4112 503.61 2.2e-16 0.8766 

0.3 10.060 0.0001 0.5351 920.71 0.0034 0.6578 1028.84 1.17e-11 0.9440 

0.6 6.606 0.0001 0.6192 570.28 0.0092 0.7854 508.192 2.2e-16 0.9763 

0.9 8.969 0.0001 0.7918 535.65 0.0008 0.7867 817.442 2.2e-16 0.9894 
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The table 8 presents the relative performance of the cointegration term when the error term is generated 

from gamma distribution and sample sizes is 90. The results show that the Phillips–Ouliaris is the best at 

various correlation levels followed by Engle-Granger. The performances of the three tests improve as 

correlation level increases. 

 

CONCLUSION 

 

The relative performance of the Engle-Granger, Johansen test and Phillips–Ouliaris in determining the 

cointegration of the pair of the data generated at different levels of correlations between the two variables 

when the sample size is 30, 60 and 90 and error term is normal are carried out and presented in tables 3, 4 

and 5 respectively. It was observed that, both Johansen test and Phillips–Ouliaris reject the hypothesis of 

no cointegration due to their p-values less than 5% while Engle-Granger do not reject the hypothesis. 

Hence, there is no cointegration based on Engle-Granger, whereas, there is cointegration based on the 

other two tests. It was also observed that the strength of determining the existence of the cointegration 

across the cointegration decreases as the levels of the correlation increases with Phillips–Ouliaris as the 

best and has the best fit as indicated by R2 at all levels followed by Johnsen test. Therefore, there is 

cointegration based on the three tests. However, the strength of determining the existence of the 

cointegration across the correlation levels decreases as the levels of the correlation increases by Engle-

Granger and Johnsen tests. Phillips–Ouliaris seems to be the best as indicated by p-values and R2 at all 

levels followed by Engle-Granger at this category.The results of three tests of cointegration when the 

error term is distributed gamma are shown in Tables 6, 7 and 8 for sample size of 30, 60 and 90 

respectively across various levels of correlation. It was observed that Johansen testperformed more than 

others in determine the cointegration between the pair variable at various correlation levels due to its 

smallest p-values. This followed by Phillips–Ouliaris when sample size is 30 while Phillips–Ouliaris is 

the best determinant at larger sample sizes of 60 and 90. The performance of all the three tests improves 

as correlation level increases based on the p-vale and R2. 

In conclusion, from the three tests, it shows that there is cointegration with Phillips–Ouliaris as the best 

followed by Engle-Granger and Johansen test when sample size is small, medium and large respectively 

for both normal and gamma distributions. It was also observed that the strength of determining the 

existence of the cointegration across the correlation increase as the levels of the correlation confidents 

increased. 
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