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ABSTRACT

This paper seeks to formulate a more accurate forward-backward algorithm for solving optimal control
problems using the 7-stage Runge-Kutta of order 6 (RK6) numerical scheme. The control variable were
approximated using the interpolating polynomial or spine while the RK6 forward and backward sweeps
were used in approximating the state and adjoint variables respectively because its A-stability, accuracy
and higher rate of convergence. Three numerical examples were simulated to ascertain the accuracy and
convergence of the 6th order Runge-Kutta forward-backward sweep method (K6FBSM). It was
discovered that the RK6FBSM performs better when compared with the Euler and the 4th order Runge-
Kutta Forward-Backward Sweep method RK4FBSM.
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INTRODUCTION

Optimal control involves finding control inputs that optimize a particular performance criterion subject to
system dynamics and constraintst!l. The modern formulation of optimal control theory began in the mid-
20th century with contributions from Plethora of authorsf®, The Forward Backward Sweep Method
(FBSM) is an indirect numerical method widely used for solving optimal control problems due to its
computational efficiency and ease of implementation®l. Reviewed the FBSM for both bounded and
unbounded control problems, incorporating various numerical schemes such as Euler, trapezoidal, and
Runge-Kutta techniques®. The method iteratively solves the state equations forward in time and the
adjoint equations backward in time, updating the control inputs at each iteration®). The Forward-
Backward Sweep (FBS) method is a popular technique for solving optimal control problems, especially
those formulated as two-point boundary value problems by iteratively solving the state and costate
equations forward and backward in time, respectively®l. According to the FBS method is particularly
effective because it directly integrates the state and costate equations while updating the control policy at
each iterationtl. The method is proven to be robust and provides accurate solutions for a range of test
problems, demonstrating its utility in practical applications!®l.
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METHODOLOGY

The solution to optimal control problems involves the derivation of the optimal control characterization
and the use of the forward and backward sweep for the state and control trajectories respectively®. By
the Pontryagin’s maximum, the optimal control can be analytically derived by the optimality condition
while the state and control variables can be derived numerically using the Runge-Kutta of order six
subject to the adjoint and transversality conditions°l.

1.1: Statement of problem

We considered the generalized Optimal Control problem given below;

T
max(min).J(u) = /[ F(t,x (t), xa(t), ..., xn(t), w(t)) dt

(1)
subjectto:xt = gu(t,xa(t),x2(t),...,Xn(t),u(t)) (2
X2 = Qa(txa(t),x2(t),.... xn(t),u(t)) ®3)
Xn = gn(t,xa(t),x2(t),...,xn(t),u(t)) (4)
Umin < U< Umax (5)

where (X1(to),X2(to),....Xn(t0)) = (0,0,...,0)T € R".

The Hamiltonian of the constrained optimal control problem is written as

H = F(ta1(t), 22(t), ..., 2a(t),ult) + > Nigi(t, a1 (t), 22(t), ..., wa(t),u(t).  (6)
i=1

and the optimality, adjoint and transversality conditions are expressed below respectively as

OH OF N Z \ dgi

(Optimality) v ou & i ")
: OH IF <, 9gi

(Adjoint) A= e T _a;,_z)\a (®)

(Transversality), NT) = 0Vi=12...,n ©)

1.2: 6th Order Runge-Kutta Scheme

The 7-stage Runge-Kutta of order 6 (RK6) iterative scheme was considered for the development of the
forward-backward sweep Algorithm for the solution of Optimal control problems!*t], The RK6 enhances
the level of accuracy of the results of the optimal control problem with the developed algorithm!*21,

AJMS/Oct-Dec 2024/VVolume 8/1Issue 4 143



6TH-ORDER RUNGE-KUTTA FORWARD-BACKWARD SWEEP ALGORITHM FOR SOLVING OPTIMAL CONTROL MODELS
OF EPIDEMIOLOGICAL TYPE

Ky = hf(ty, zp),

h K
Koy =hf |t + —? Ty + Tl) ,

Ky + K
f&g—hf(f,z,-i-— Ty + XI;_ &2),

—5H Ko + 8F
hf (thr I‘;L 9] \2+ \5) :

§
3h K Ky +4K,
hf(fg-i-—?l'k L 82+ 34)!
3Ky +2K3 — Ky + 2K
Kﬁzhf(tk+—“ tat “‘8 Jaa )
K| — 2Ky + 4K5 + 4k
IX’}:hf(f}“Fh l,§+ e ‘2<; i+ &6)

TKy+32K3 + 12K + 16 K5 + 16 K¢ + TH5
90

Tyl = T

1.3: Forward-Backward Sweep Method

The derivation of the forward-backward sweep requires the discretization of state, control, and adjoint
variables along the knots to< t; < t, < --- < tn, such that @§ = i(to + khy |

uf = us(to + khy, and Aji= Ai(to— jh) for te= to+ kh and h = (T — to)/N is the

Step-length with N number of grid-points.Therefore, for any argument x; in the state vector (
af,2b, -+, 2}) € R'and a unit adjoint variable us for s € {1,2,--- ,m} and the forward sweep of the state

variable using the RK6 method is written as:

Ky = hg:(tg. 2* Jlu <(k)), . (10)
Ki» = hgs(tr + ZL x¥ + T ws(tn + —)) (11)
Kz = hgs(te + g xy + *(Kl + Ks2), ws(tr + g))a (12)
Ky = hga(te + g x; + —(—51(2 + 8K3), us(ts + ﬁ)) (13)
Kis = hgs(te + %, ak —(le + Ko+ 4K3), us(ty + 3ib)) (14)
Ko — hge(te + 3;" (B 4 20 — Kt 2K5), ua(t + 31’)) (15)
Ky = hgr (tk + h,xk %(K1 — 2K + 4K + 4Ks), w.(ts + h)) (16)
2 — gk 4 TK; +32K3 + 12K, + 16 K5 + 16 K¢ + 7K7~ an

i ] 00

for the subscript of each argument i= 1,2,--- ,n, r =1,2,--- ,m, the counter k = 1,2,--- ,N. and the functions

i s Og1 11
g, | =1, 2---7 are once continuously differentiable within the time interval [t”'T] (1'0 or, € C ffo T})
and Ki denoting the dynamical function of the i—th component (argument) and the I-th stage. For the

OH
control characterization, the optimal variable is derived using the optimality condition @w.= 0 such that
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wr = min{max{t,in, Ur, }, Umaz (18)

The interpolating polynomial or spline [8] of the control variable us(.) can be computed as the formula;
au(t + h) + (b — a)u(t)

b (19)

The control variable for the forward(+) and backward (-) sweep are approximated respectively as follows;

u(t+h)+3u(t)

1 a=1b=4
ah u(t+h)+u(t)
(e ER L A
311(15—1—.’;)+-u(t)
The backward sweep of the adjoint variables using the proposed RK6 method requires the discretization
of the adjoint such that for any argument! € (M. A3, -+ . AL) € R™ with a specific control variable us
attached to each state equation is expressed thus:
. OH
A = — t, i T, ug), 1=1,2,...,n.
(3 aff.,( '.‘,,(LI-,/US)t l ? ,n‘ (21)

Deploying the 7-stage RK6 numerical scheme in the discretization of the backward sweep for the adjoint
variables yields the following:

. oOH p .

K; = —%(tj, AN, us(F)), (22)
. oH hoo Ky K h N
K = m(thrZ, A; +T,~L-,; +T’ LL.s(t]+Z>)7 (23)

- oH h 1, ~ J 1, . h
]&/7‘,3 == —TLP(t] —+ Z, )\'lj —+ g(]&'| -+ IXQ), ,’IJ:; —+ g([&1 —+ _[&2), ’II,H(tJ' -+ Z)), (24)
. oH ho 1 . . p 1 . . h
IX‘Z‘4 = —a'—l‘f(t/ —+ 5, Ai —+ 6(-5]&2 -+ 8[&3), IL",; -+ 6(—5}\2 -+ 81‘&3),’&5(1‘::}' -+ 5)), (25)
] OH 3h . 1, i R ; i 3h
[X,,;r, == —a—“(t_] —+ Z, /\Jl —+ g(f&'[ —+ IXQ -+ 4[&3), .’L",,{ -+ g([&l —+ I’\Q -+ 4_[&3), 'I.l,,.;(tj -+ T)),
(26)
OH 3h 1 p 1
[(,,;(; = —C‘;—(tj -+ %, /\]l -+ g(BIX'Q -+ 2}(3 — 1(4 -+ 2[&75), .’If',: -+ g(3]\'2 -+ 2[&73 — 1(4 -+ 2](5)’
ox;
us(t; + 3h4)), (27)
i OH o1, i . T i ) i
1&,‘7 = — O (ZLJ —+ lb, Al’i -+ ?([XI — 2]&2 -+ 4[‘&3 -+ 41\'6)7 xTy -+ ?(]Xl — 2[&2 -+ 4]&3 -+ 4]&(,‘)7
us(t; +h)), (28)
i p h
AT = A 9—6(71{1 + 832K + 12K, + 16K + 16K + TK7). (29)

1.4: RK6 Forward-Backward Algorithm for Optimal Control Problem
Step 1: Initialization Input
zi(te) =2V, N(N)=0Vi=1,2,---,n, T, tog, u,(to) =ul, Vr=1,2,--- ,m

[

Step 2: Forward Sweep for state variables

Compute while k =0,1,2,...,N do ;" from equations (10) to (17) respectively and sequentially.
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Step 3: Backward Sweep for adjoint variables

Set j = N + 2 — i and compute 4! from equations (22) to (29) respectively Step 4: Control
Characterization Compute control within bounds v = min{max{umin, tr, }, thmaz} for r="1.---,m
from equation (18)

Step 5: Termination criteria

If termination conditions are met go to step 6 otherwise step 7

Step 6: Output x5, %, u*(Vi,j) and end function Step 7: Return Repeat step 2
2: Numerical simulations: Implementation and Results

Example 1: Considering the optimal control problem below

MinJ[ul = minf u(e)2 dt,
X (t) = x(t) + u(t), (30)
x(0) = 1, x(2) free.

The Hamiltonian function H is defined as H = u(t)? +A(t)- (x(t)+u(t)) where A(t) is the adjoint variable (or
costate). Using the optimality adjoint and transversality conditions yields the analytical (exact) optimal
solution below:

x*(t) = €, us(t) = 0. (31)

. : . o .. OH .
The optimal control obtained using the optimality condition, 5. = 0, is given by

ut(t) = —@
= min (u.mm max ('“-nw‘m _%>) (32)

. - . PH _
ascertained to be minimum since .z — 2 > 0.

! _ OH
N(t) = ~ 9I(1), given by:

The derived costate equation using the adjoint conditions,
A =—A1), AT)=0 (33)

Applying the forward Euler, RK4 and the proposed RK6 forward -backward sweep methods (i.e
RK4FBSM and proposed RK6FBSM respectively) yields the results below.

Tablel: Result of State variable for example 1

SIN | Exact Euler RK4FBSM Proposed RK6FBSM
XA XE [Xa— Xe| xK4 [XA— xK4| xK6 [XA—
XK6|
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1

10

1.1051709181

1.2214027582

1.3498588076

1.4918246976

1.6487212707

1.8221188004

2.0137527075

2.2255409285

2.4596031112

2.7182818285

Table 1: [xa— Xg|, [Xa— Xka|and|xa — Xke| = errors of Euler RK4 & RK6 respectively

1.1111111111

1.2345679012

1.3717421125

1.5241579028

1.6935087808

1.8816764232

2.0907515813

2.3230573125

2.5811747917

2.8679719908

4000

3000

||zicr — 2]

2000

1000

5.9401930000
x1073

1.3165143100
x107?

2.1883304900
x107?

3.2333205100
x107?

4.4787510100
x107?

5.9557622800
x107?

7.6998873800
x107?

9.7516384100
x1072

1.2157168060
x107t

1.4969016230x10*

Rate

1.1051708333 8.47000 1.1051709181
x10°8

1.2214025709 1.87300 1.2214027582
x1077

1.3498584971 3.10500x10~" 1.3498588076

1.4918242401 4.57600 1.4918246977
x1077

1.6487206386 6.32100 1.6487212707
x1077

1.8221179621 8.38300 1.8221188004
x1077

2.0137516266 @ 1.08090 2.0137527075
x1076

2.2255395633 ' 1.36520 2.2255409285
x107®

2.4596014138 1.69740 2.4596031112
x107®

2.7182797441 2.08430x10°° 2.7182818285

of convergences of methods

—RKAFBSM |
—_— RKG6FBSM
Euler

converging to zero

iterations -

Figure 1: Rate of convergence in 10 iters.

Example 2: Considering the SIS Model with Treatment [9]

min C'lu] =

s.t: I(:‘) =f

AJMS/Oct-Dec 2024/VVolume 8/1Issue 4

‘/-T wil(t) + u?(t)) dt,
3N — L)) — (e + ) L(t) —u(t) ()

(34)

(35)
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1(0)

The Hamiltonian is given by:

lo, I(T)free.

(36)

H(),u(®),A(t) = wal(t) + u?(t) + A (BN — I{))I(t) — (1 + I(t) — u®)1(t)(37) The optimal control
obtained using the optimality condition, (:)A: 0, is given by

u(t) =

A(B)I(t
= min ('”-maxt max (’Mm?’n- %))

A)I(t)

2

. .. ] 9%H
ascertained to be minimum since w2z = 2 > 0.

The derived co-state equation using the adjoint conditions,

N(t) =

A1) = 1= AN = 1()) = BI(1) — (u +) — u(), A(T) =0 (39)

_OH
a1(1), given by:

(38)

Applying the forward Euler, RK4 and the proposed RK6 forward -backward sweep methods (i.e
RK4FBSM and proposed RK6FBSM respectively) also yields the results in Table 2 below using the
following parameters: = 0.05, u=0.01, y =0.5,N=100, w1=1and T = 1.

S/N | Euler
XE

1 10.0000000000
2 8.7650656568
3 8.2556597311
4 8.1851105244
5 8.4592147545
6 9.0673116818
7 10.0557266500
8 11.5303031948
9 13.6800933636
10 | 16.8306930352
11 | 21.5547425985

Table 2: Result of State and Control variables for example 2

Ue

5.2355651638

4.6326137300

4.1600567381

3.7431700492

3.3460084781

2.9449889133

2.5197980734

2.0484433716

1.5026879752

0.8415968385

0.0000000000

convergence

xK4

10.0000000000

9.5613737942

9.4089685710

9.5201882548

9.9038244602

10.6018768364

11.7007294372

13.3574883436

15.8577984930

19.7510850824

26.2132226347
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uka

4.5926947060

4.3167361686

4.0418362859

3.7594888052

3.4602903181

3.1325900058

2.7604692418

2.3201655255

1.7728678617

1.0482398348

0.0000000000

Proposed RK6FBSM

xK6

10.0000000000

9.5464589222

9.3440040276

9.3763319652

9.6519009702

10.2060033528

11.1093962855

12.4871637697

14.5571182701

17.7109254612

22.7016008493

uke

4.6363573386

4.3768363778

4.1061078144

3.8164326820

3.4992076079

3.1440596831

2.7374992954

2.2605946027

1.6844954512

0.9609642283

0.0000000000
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Convergence of Methods -Infectious class

8 T T T T
—RK6FBSM
6- ~—RKA4FBSM
= —Euler
Uz
ot J
0
0 2 4 6 8 10

No. of Iters.

Figure 2: Rate of convergence in 10 iterations.

Example 3: We considered the model on optimal control and comprehensive cost effectiveness analysis
for COVID-19 [2]

T 4
Ty, g, s, tg) = min/ lAlE + Aol + AzA+ AuB + % > Duui(t)
0 =1

(40)
Subject to the non-autonomous system below
(45— A — (1 —uy(t) PAEE2E0A) G (1 -y (F) — us(t)f4ES — dS,
% = (1 —wu(t)) BLES o1F 34 j,f‘g “A) S+ (1 —u(t) — u,g(t)ﬁq_“TBS —(0+d)E,
< E—i =(1=7)0FE — (d+dy +m)I,
G =T0E — (d+72)A,
it — I +7A—dR,
42 = (1 —us(t) (V1 B + ol +¢3A) — (ua(t) + ¢) B, (41)
where A;i >0(i= 1,2,3,4). The derived adjoint equations were
(D0 = (A — Ao (1 — ) (LB 288 4% (B | [y A" 4 R7)+
(A1 — A2) (1 — uy — woJ45-(E* + I* + A* + R*) + A\id,
d(?f — A+ (A= Aa)(1— ul)S*(.9*+1*+A*+R%é—(§ 21" 8 3/1*))+
(A2 — AD)(L — up — uaF28555 + (5 + d)Aa — Aa(1 — 7)0A3 — 76As — (1 — uz)Y A
(1;;3 = Ao+ (A — Mo)(1 — ul)S*((S‘+E*+A*+R*ﬁr22—(ﬂ \E* 8 3/1*))+
(A2 — A (1 — wr — w555 + (5 + dy +71) A3 — 1 As — (1 — ug)a s,
%4 = Ay + (A — Ao)(1 — ,U.I)S*((5*+E*+1*+1£*§r2ﬁ1 1E* 8 -21*))+
(A2 — A (1 — ug — uaF255 4 (di + 72) A — Y25 — (1 — ug)ihsde,
D= Qo = A)(1 = ) (RS )
(Ao — M) (1 — uy — uof25- + A5,
\ B — — A+ (M — X)) (1 — uy — ua§-57 + (us + ¢)Aed, (42)
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while the optimal control characterizations were;

u;(t) = min {max {[).
us(t) = min {max {0,
us(t) = min {max {0,

(Ao — MR 1 E* B o I8 A4 B*)S

(Ao — A 4B*S*

D2 N

B* A\g
wy(t) = min {max {(), ¢ D, 6 } ,U.mm} .

Simulating with the following parameters f1 = 0.1233;5> = 0.0542;53 = 0.0020;54 = 0.1101;6 = 0.1980;7 =
0.3085;d = 1/(74.87 * 365);d1 = 0.0104;y1 = 0.3680;y2 =0;yw1 = 0.2574;y2 = 0.2798;y3 = 0.1584;¢ = 0.3820
yields the results below.

} ) JU'QII’I&].X} 3

Ao (V1 E* + o I* + p3 A*)
Dy

} -“Z_‘hnax} ’

} 5 Ulmax}

(43)

Table 3: Convergence analysis of State variable (E(t)) for example 3

S/N | Euler RK4FBSM Proposed RK6FBSM
Ee [ EK4 IE5== EK6 (|

1 1.5000000000 | - 1.5000000000 1.5000000000

11 1.4586854415 | 2.7646377x1073 | 1.4582818367 | 2.7890189x10° | 1.4581829510 | 2.7953366x107
21 1.4194850125 | 2.6987961x1073 | 1.4187988721 | 2.7167244x10° | 1.4186243717 | 2.7216273x103
31 1.3821955578 | 2.6394372x1073 | 1.3813219909 | 2.6520393x10° | 1.3810945185 | 2.6556630x1073
41 1.3466385402 | 2.5859736x107% | 1.3456514066 | 2.5942269x10° | 1.3453892655 | 2.5968128x1073
51 1.3126570130 | 2.5378496x1073 | 1.3116129021 | 2.5425930x10° | 1.3113294894 | 2.5443931x10
61 1.2801128162 | 2.4946384x1073 | 1.2790541427 | 2.4967666x10° | 1.2787595421 | 2.4977039x103
71 1.2488168407 | 2.4685349x1073 | 1.2477535795 | 2.4713852x10° | 1.2474913995 | 2.4675198x1073
81 1.2184644912 | 2.4616005x1073 | 1.2173844274 | 2.4656931x10° | 1.2171894367 | 2.4600497x103
91 1.1893046217 | 2.3341404x107® | 1.1885613052 | 2.2797627x10° | 1.1883097475 | 2.2930852x1073
101 | 1.1685184378 | 1.2045593x103 | 1.1684734094 | 1.2114794x10° | 1.1676305020 | 1.2714446x1073
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CONVERGENCE OF E(t) FOR Euler, RKAFBSM & RKGFBS Convergence of B(t) with Euler, RKAFBSM & RKGFBSM

X107 , : =RKFBSM

Euler = 03 - RKGFBSM

= RK4FBSM f ' Euler
—RK6FBSM 4

1 L i J 0 20 40 60 80 100
0 20 40 60 80 100 120 Homa (4
no. of iterations (i) 10. Of Lers. (2)

Fig. 3: Convergence of E(t) in 101 iterations. Fig 4: Convergence of B(t) in 101 iterations.

DISCUSSION OF RESULTS

In example 1, the rate of convergence of the 3 methods: Euler, RK4 and Rk6 were compared on the state
variable as demonstrated on table 1. It was discovered that the rate of convergence of the RK6 compares
favorably with RK4 with higher level of accuracy after 10 iterations. In similar manner, Table 2 and 3
were used to compare the Iterates for the Euler, RK4 and RK6 forward-backward sweep methods on the
state variables of examples 2 and 3 respectively. Figures 2, 3 and 4 were used to illustrate the rate of
convergences which shows that the RK6FBSM performs excellently well although the computational
efforts is more in terms of rigors of coding and process time.

CONCLUSION

The adaptation of the 6th order Runge-Kutta forward-backward sweep algorithm for solving generalized
optimal control problems with bounded control arrives at an accurate result at a faster rate of convergence
compared to the Runge-Kutta of order four (RK4), due to its stability and higher numerical order of
convergence. This adaptation is essential for handling mathematical models with large number of non-
linear dynamical equations. Therefore, the sixth order Runge-Kutta forward-backward sweep algorithm
seeks to provide a more effective and efficient method due to its speed, accuracy, higher rate of
convergence, suitability and versatility for real-time or practical applications such as the Epidemiological
and general Biomedical models (see MATLAB code in Appendix).
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