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ABSTRACT

A one-dimensional model to determine the laminar ow of a fluid in a porous channel with wall suction or
injection is proposed. The approach is based on the integration of the Navier—Stokes equations using the
analytical solutions for the two-dimensional local velocity and pressure fields obtained from the
asymptotic developments at low filtration Reynolds number proposed by Berman ™ and Yuan and
Finkelstein 1. It is noticeable that the resulting one-dimensional model preserves the whole ow
properties, in particular the inertial terms which can affect the wall suction conditions. The model is
validated in the case of a single porous channel of rectangular or circular cross-section with uniform or
variable wall suction. Then the model is applied to a two-dimensional multi-channel system which
consists of a great number of adjacent entrance and exit channels connected by a filter porous medium.
All existing models aren’t analytical, and need to use complex numerous calculations. The present model
is a first an attempt to reduce the problem to a simple analytical scheme based on Berman Similarity and
perturbation series solution method that allows it to be used by general engineers not using complex
mathematical methods.
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INTRODUCTION

Numerous filtration systems consist of parallel porous channel bundles, i.e., multi-channel systems.
Membrane modules used in microfiltration and ultrafiltration are typically multi-channel systems#! Flat-
plate membrane modules, which are the earliest configurations developed for commercial applications,
use multiple at sheet membranes in a sandwich arrangement consisting of the support plate, the
membrane and the channel spacer. The hollow fiber modules consist of an array of narrow-bore fibers
with a dense skin layer at the lumen side of the fiber and a macro-porous matrix for rigidity. The multi-
channel tubular devices are made of individual porous tubes, which support the membranes, placed inside
a sleeve to form a single tube cartridge. The pleated filters are also multi-channel filtration systems
developed to arrange large plane filtration area on relatively small base areas 4
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All the models discussed above for laminar ow in a porous channel with suction apply to multi-channel
systems if there is no coupling between the individual channels.

This statement is incorrect if there is coupling. At this stage, some refinements are required to include the
coupling in the models. The problem can be considered as coupling of two separate problems; (i) laminar
ow in a porous channel with wall suction, (ii) laminar ow in a porous channel with wall injection.

In addition, the common porous wall of the two channels is shared with specific porous media
characteristics. Thus, a number of models were developed to investigate fluid ow in a unit element of a
multi-channel filtration system which consists of two coupled channels =71, However, these models still
fail in the case of multi-channel systems with spatial heterogeneities such as spatial distribution of
entrance ow rates, spatial distribution of channel width, or unexpected plugging of some entrance
channels for instance. In this latter case, the flow should be modeled for the entire system to account for
the complex geometry and boundary conditions.

Moreover, all existing models aren’t analytical, and need to use complex numerous calculations. So, it is
a first an attempt to reduce the problem to a simple analytical scheme that allows it to be used by general
engineers not using complex mathematical methods.

Description of the Model

This study will focus on 2-D fluid flow through channels, where the plane boundary between two
chambers is permeable with uniform suction/injection.

The main assumption is that the both chambers are completely identical with the only difference that the
porous wall is the injection boundary for the first chamber, and for the second one it is the boundary of
suction. So we may consider the flow in the right chamber at the scheme shown at the Fig. 1; it is shown
at the Fig. 2. The left chamber has a similar view with the same coordinate system where in the both
cases, for the both chambers, the ¥ ~axis is directed towards the porous wall. Thus the both flows are
considered in independent coordinate systems, and they are connected only by a common porous
boundary.

Note, that the channel of the left camber may have another width h= h2. The channel widths h=h, h,

are assumed to be constants. As shown in the problem geometry below, U and V are the velocity
components which are the functions of X and Y, # is the dynamic viscosity. For the model problem
under investigation, we make the following additional assumptions:

Q) Formulate a mathematical model which determines the nature or behavior of the steady
laminar flow in the channel with one porous wall.

(i) The fluid is viscous and incompressible.

(iii) A two dimensional flow scenario is considered.

(iv)  The flow is driven by combined action of wall suction/injection and pressure gradient.

(v) A steady state flow situation is considered.

Under the above assumptions, the model equations of motion above reduce to:

u v
ox oy

au au 1 6P ,u( o%u aqu
u—+V—=———+ = +

X oy P ox  plox?  oy?

ov ov 1 6P ,u(ézv 62v]
Uu—+V—=———+— +—|.

Ox oy p ox  plox?  oy? (1.1)
The boundary conditions may be written in the form
u‘ L= 0, v‘y:h =4 (1.23)
u‘ =0, v‘ =0

o =0V, =0 (1.2b)
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Figure 2: Identical scheme for the both, left and right chambers.

h

The initial velocity #V at the porous wall (+1 is for injection, and —1 is for suction), at ¥ =", may be
found from,
vkl _kap _kPR-P

mHoyl, u6 u 0o (13)

Where, K [m 2] is the coefficient of permeability, and O s the width of porous wall. We then write the
equations of motion in a dimensionless form, starting by scaling the variables as follows:

xy)/ h=("y), (uv)/V =@U’,v’), P/ (& /h) ZP*, (1.4a)
ol ox =>h™?0/l ox”, 0/ oy =>h?ol oy” (1.4b)

The quantities denoted by an asterisk are in non-dimensional form. Substituting the non-dimensional
quantities (as shown in (1.4a) — (1.4b) above) in the equations of motion (1.1) it will change them to:

*

ou” ov
~+—==0

OX oy

) . . .
v_u*au*w*au* :_l 8* P W +szu*,

h ox oy P hox h ph?

2 * * *
V—(u*av* v J:-l—a*{P w J+ Wz VA

h OX oy £ hox h oh (1.5)

Dividing through by and follow to # s the Reynolds number Rewe obtain
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n - =0,
ox oy
U*GL*+ *5U_*__ 6*(p*)+ivzu*
OX oy OX Re
u*av* v*ﬂ:— 6* p*)+ivzv*,
OX oy OX Re (1.6)

*

u

vl vl (1.7a)

=0

=0, v|.
y =0 (1.7b)

u*

‘y*—O
Next, we will omit the asterisks () at the superscripts; here +1 is for injection, and —1 — for suction.
Stream function

We can define the stream function ¥ for two dimensional flow by expressing the flow velocity as,

u=(u,v,0=Vxy (2.2)

Where, ¥ = (0.0.%) | Cartesian coordinate system this is equivalent to

uv v

oy OX (22)

Then, the continuity equation is satisfied identically.

6_u+6_u:3(a_wj+g[_a_w}o L u
ox oy ox\oy ) oyl ox ox oy (2.3)

The total derivative is

dy = a—l/jdx + a—‘//dy = —vdx + udy
X oy (2.4)

Whereby w(%.Y) s a constant along the streamline, then dy =0, Hence, the equation (2.4) may be
rewritten as

(2.5)
This is the equation which we use to determine a streamline. Streamlines are therefore lines of constant
and they cannot cross each other except at stagnant points.
Moreover, we can define a stream function by modifying the Navier-Stokes equations. This can be easily
done by differentiating the X -momentum equation of the system (1.1) with respect to y and the Y -
momentum equation (1.1) with respect to X and then subtract, so as to eliminate the pressure term. The
resulting equation becomes:
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oy 0 ,, oy 0 ,, 1 ,_.
—— — (V) - ——V)-— (V') =0
Y ax( ) Y ay( ) Re( ) (2.6)
where V* is the 2-D bi-harmonic operator. The associated boundary conditions are
G onY=0
a_ofoy) dv v _of ov)_ _dw
oy oylay ) oy ox ox| ox ) ax?
Oy : oy ,
— =V =0 —| =y, _0=0
YA y|y:° x| . (2.7a)
) onY=1
= ! = V = ! = il
‘y:l Yy y=1 ' ‘yzl Y y=1 , (2.7b)

(+1) is for injection, and (—1) — for suction.

Berman Similarity

Consider the Berman problem © — ¢ where a two-dimensional flow in a channel is considered and
X € (—oo,0), y € (0,h). For an incompressible steady-state flow, we consider a stream function in terms

(2.2). Using Jacobian determinant, our motion expression (2.6) written in terms of stream function may
be rewritten as,

o 0
2 —(Vy) —(Vy)
AV y) _|ox oy _OW 0 oy WD ey Lo (2.8)
oxy)  |ow oy T oy ox V%) = ay(V = reV V)

ox oy
Suppose Q = V?y, equation (2.8 becomes)

M = i(vzg) .

2.9
ox,y) Re 29)

Where, Q = V2 is the velocity. We seek for similarity solution of the form v = xf (), where x,y are
all dimensionless, and y = 77. Then,

v, =fm), v, =xt, v

=xf".
nn nn

Applying this to equation (2.8) it yields

ff” —ff” =Re*f" (2.10)
nn nnn nnnn
with boundary conditions
(i Atn=0
vi| =0 = fO=0y| =w| =0=fO=f@©=0 (2.11a)
(i) Atnp=1
v, =0 = =0y =+ = f()=+1 (2.11b)
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4 4

dueto v =xf(n), v =1(n), 1//7'] = qu’, y, = Xfw.
As a result we obtain the boundary value problem

Re(ff" —ffm) = f" (2.12a)
f(0) =0, f(0) =0, f(1) =+1 f'()) =0 (2.12b)

Pressure gradient

In many fluid flow problems we consider the speed of the flow at any point to be proportional to the
change of pressure per unit length and this is what we call the pressure gradient. This implies that the
flow is always in the direction of decreasing pressure. An adverse pressure gradient occurs when the

static pressure increases in the direction of the flow. Mathematically this is expressed as dP / dx > 0.

dP
The pressure gradient is said to be favorable to the flow when o ° ° . Since the fluid in the inner part of
the boundary layer is relatively slower, it is more greatly affected by the increasing pressure gradient. For
a large enough pressure increase, this fluid may slow to zero velocity or even become reversed. When
flow reversal occurs, the flow is said to be separated from the surface.

Pressure gradient is one of the factors that influence a flow immensely and the shear stress caused by
viscosity has a retarding effect upon the flow. This effect can however be overcome if there is a negative
pressure gradient offered to the flow. A negative pressure gradient is termed a favorable pressure gradient
since it enables the flow. A positive pressure gradient has the opposite effect and is termed the Adverse
Pressure Gradient.

From the second equation of the system equation (1.2), we have

_a_p :ua_u_f_va_u_ivzu
OX OX oy Re ) (31)

Substituting

r _ i "y _ ' n _ 2 r_ i "y _ "y _ "
w; =), = ) =Xt vu) = —pi(w],) = <D0 = i

Vau=ug +ul = (W), + () ), =(E), =xy! (3.2)
Gives

_ 12 " m
—(0p/ ox)Re =x [Re(fn B ff'm) B f’7’7'7]

: (3.3)
—re? =
Let us assume - o XA with A to be the pressure gradient constant. So equation (3.3) has a view,
_ 2 "y _§m
A= Re(ff7 ffm]) fw7 (3.4
P _ oP

Remember, that p=P/Re ,one obtains o XA Re, and finding A we will find & and so
P(x) =P, —3AKX)* =P, = JA(X ...,/ ) 0 P, —AP | (35)

The most researches try to resolve the equation (3.4) with the boundary conditions (2.12b). Nevertheless,
attempts to solve this problem, in contrast with solution of the classical Berman problem with initial
boundary conditions ® °l directly applying the perturbation method, do not lead to success since the
boundary value problem turns out to be incorrect. The reason is that symmetrical problem is connected
with the flow between the both porous walls when we have a deal with initial boundary conditions. Note,
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that numerous attempts to solve this boundary value problem by reducing it to the classical Berman
problem using the method presented by Terrill °~ 3 and improved by Cox 2 131 turns out to be a rather
complicated matter.

The solution of the boundary value problem (2.12a) — (2.12b), as it will be shown below, using the well-
known perturbation method, does not require significant difficulties.

Perturbation series solution method
The flow of an incompressible Newtonian fluid through a rectangular micro tube is considered, with x -

axis being in the axial direction as shown in the problem geometry.
By seeking similarity solution of the form yw =xVf(n) and n =y / h we have shown that the Navier-

Stokes equations can be reduced to (compare with (2.12)):

fV ¢ Re(ff"—ff") =0, (4.1)
f(0)=0, f(0)=0, f(1)=+L f'(1)=0. (4.1b)

Equation (4.1a) can be solved by perturbation series method, by seeking the solution in the form of power
series in Re. That is,

f() = ifk(m Re* (4.2)

For small Re (let say for the first two terms), the higher powers of Re such as Re? Re®,...,Re",... will

also give us very small values of Re, therefore, they can be neglected or approximated to zero. Hence,
equation (4.2) above reduces to:

f(p) =1, +f -Re+f,. Re’+0 (Re?), (4.3)
which implies that those which are in higher powers or Re are negligible. Introducing (4.2) into (4.1a),
equating the coefficients at the same Reynolds numbers degrees, and after neglecting the terms with

powers N =3

f¥ + 1" Rer Y Re’+ Re(f, + f Re)(f,"+ f'Re) -
~Re(f, +f'Re)(f/+ f'Re) = f¥ + 1" Re+ Re(f f"~ )
+Re?[(f A+ 1 f9 - (Ff+ £ ] =0

We obtain
f¥ =0,
fl'V + fofo’”— fo’fo” =0, (4.9)

£V 4 (Ff— )+ (FE7— 67 =0,...

Zeroth order equation: When we substitute solution (4.3) in equation (4.1a) and collecting the
coefficients of like powers of Re, it will reduce to the zeroth and first order equations of the form:

fV =0, (4.5a)

with the boundary conditions

AJMS/Jan-Mar 2025/VVolume 9/lIssue 1 27



EXACT SOLUTION FOR TWO-DIMENSIONAL FLOW THROUGH CHANNELS WITH A PLANE PERMEABLE BOUNDARY
BETWEEN TWO CHAMBERS WITH UNIFORM SUCTION/INJECTION

f(0), f/(0) =0, f,(1) =+L f/(1) =0, (4.5b)

Where, the upper and bottom signs "t" or "¥", there and bellow, correspond to the both cases,
“injection” (upper signs) and “suction” (bottom signs), accordingly. Integrating the equation (4.5a) gives

fr=C_, f'=Cn+C,,
f/=1Cn*+Cn+C, (4.6)

1 3 1 2
f,=sCon” +,Cn" +Cn+C,

Using the boundary conditions (4.5a) give algebraic equations for C ,C,C,,C,, which define
coefficients of integration

f(0)=0 = C,=0

fo'(O)ZO = CZ =0 (47)
f()=+1 = .C,+,C,+C,+C, ==l

f()=0 = ;C,+C,+C,=0.

Asaresult C =7¥12 C, =46, C, =C, =0, and hence,

fo=FQ2n* -37%), f =F6("—n), f =7F6@2n-1), f =712 (4.8)
3 2 - - - - 3 2 - -
Note, that f, = —27" + 3" is for injection, and f = 27" — 3" is for suction.

First order equation: The solution f, may be found from the problem (4.4b) — (4.5b),

flIV + fofom_ forforr — 0
f.(0) = f(0) = f,(1) = f (1) = 0.

Substitution f from (4.8) gives,
ff—ff = F(217° - 31°)(F12) - 36(1° — ) (2 —1) =

=12(2n° - 31") - 36(2° = 3n° +17) =
=24n* —36n° — 72n° + 108" — 361 = —12(4n° —6n° + 37).

Hence,
fl'v = —(fofo’”— fo'f " = 12(4773 - 6772 +37), (4.9a)
f(0)=1(0)=f () =f(1)=0. (4.9b)

Integration the equation (4.9) gives,

f"=12(n" —2n° + Sn*) +C,,
f'= 12(%775 —;774 + %773) +Cn+C,,

' (4.10)
f'= 12(3%776 —%775 +%774) -‘r-%COT]Z +Cn+C,,

f1 = 12(%777 —?10776 +T10775) +éC0773 +%C1772 +Cn+C,,
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Using the boundary conditions from (4.9a) gives algebraic equations for C ,C ,C,,C_, which define
coefficients of integration
f(0)=0 = C,=0, f(0)=0 = C, =0

411
f(1)=0 = % 2:Co+3C, =0, f(1)=0 = - +:C, +C, =0. (411)
Hence,
7 11
55C, TC, =—%,C,+ 2L,
As a result we obtain C , = —?? = —%, C = —% + % = 442;885 = 3371252 , and so
1577 1861
f _3577 _577 "'1077 _37877 31577 (4.12)
Second order equation: The solution f, may be found from the problem (4.4b) — (4.5b),
v m ” m e n
f,° +ff"- fl‘f1 +ff—f1'=0
f,(0) = £,(0) = f,(1) =f,(1) =
Substitution f from (4.8) and f, from (4.12) gives,
m en_ 1 2.7 6 , 3.5 1577 1861 6 1577
f1f1—f1f—[77 - +,0) - 37877 31577} [51077 —20n° +157°) - }
e 5,5 577 2 | 312 6 1577 3722
SHEE ) 0| [5( -5yt +5p) -+ 2 =
11 264 1329 1212 10103 6 1577 14388 (4.13a)
(17577 17577 +3577 1077 +18977 Tl T 2177 +10577 +
2486929 2934797 13853284
T 703 77 6605 77 * 77)’
= T2 LGy =+ ) - S
607" ~ )| 2 (@n° ~5n* +50°) - S+ T2 | =+ {[g (=20 +0° = 30°)+ S = T2 |+
(772 _ 77) [2(2775 _5774 n 5773) 15;7 n+ 3371251} _ i6($777 _ 8776 n 2775 _ 677 4B 77 32 77)-
(4.13b)
Follow to
2 7 1.6 3 5 1577 1861 ! 2 _6 6 5 3 _4 1577 3722
f=xn —sn +un - 37877 31577’ fl=sn —sm +3n - 12677 a5 1 (4.14)
fll':%US —6774 +67]3 1:;777_'_ 3371252’ flrn: 12774 _24773 +1877 _%,
and (4.8) we obtain for injection:
m wen m / "_ 264 10 132 . 9 306 __8 460 7 161543
flfl - 1:1f1 + flfO f (175 77 IR A e/ A N/ B = 77 -
15067 + 18868 + 2486929 3 _ 3928307 2 20887864 ) (4153-)
105 77 105 77 7938 6615 99225 77
and for suction:
m e n m / "_ 11 264 132 . 9 1268 141337
flfl - f1f1 + f1f0 f (175 77 175 ?7 35 77 10 77 + 63 77 73155 77
703 11108 4 2486929 1941287 2 6818704 (415b)

10577 * s 77 + 7938 77 "~ 6615 77 99225 77)
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Hence, we have the next two boundary value problem for the both cases, injection and suction,
accordingly

(Vv _ 48 11 264 10 , 132 9 306 g 460 7. 161543 ¢ 15067 5 18868 4

2 175 IR 107 e 3155 105 105 (4.16a)
| 2486929 3 3928307 > 20887864

7938 7 6615 g 99225

1

IV. 48 11 264 _10 , 132 _9 1268 141337 11108
fz _ﬁn ﬁn +§77 10 77 T 77 3155 77 10577 + 105 77 + (416b)
n 2486929 3 1941287 2 n 6818704 '

7938 6615 99225 UE

with the boundary conditions (4.9b).
Integrations the equations (4.16a) and (4.16b) for injection and suction, correspondingly, give,

IV __ 48 11 264 10 132 9 153 8 460 7 161543 6 15067 _5 18868 _ 4
" =mn — = =1~ 1 Y5l 1l vt t
2486929 3 3928307 _ 2 20887864
+ 7938 n 6615 n o+ 99225 ue
m_ 4 12 24 11 66 10 17 9 101 8 161543 7 15067 6 18868 5
f 175 175 n 175 5 n 126 22085 n 630 n+ 525 n+
2486929 4 3928307 10443932
+ 31752 19845 77 + 99225 77 +C
n_ 4 13 12 101 161543 15067 9434
f2 T 2275 n 175 77 + ﬁ 77 = 77 + 1134 77 176680 77 4410 77 1575 77 +
2486929 5 3928307 4 10443932
+ g0 1~ om0 1 s n +C077 +C,,
P2 14 2 13 1 12 161543 15067 9434
2~ 15925 n 2275 n 350 n 550 77 + 11340 77 + 1590120 77 "~ 35280 77 11025 77 +
2486929 6 3928307 5 2610983
952560 396900 297675 77 + C 077 + Cl77 + C
2 1 101 10103 15067 4717
2~ 79625 no- 15925 n 4550 77 - 6600 77 124740 77 + 15901200 77 "~ 317520 77 + 44100 77 +
2486929 7 2934797 3463321 1 .
+ 6667920 " 2381400 77 + 1488375 77 + ECOU + §C177 +C277 +C3’
(4.183)
v _ _ 264 132 _ 153 1268 _ 141337 703 11108
fz - ﬁ 175 77 35 77 5 77 + 63 77 T3155 77 105 77 105 77 +
+ 2486929 773 _ 1941287 77 + 6818704 77
7938 6615 99225 -
" 24 11 66 10 17 9 317 20191 7 703 6 11108
= 51 — s ﬁ — 2’ + e’ — S ~ &0 s 117+
+ e 1 13;‘2327 n + 3;‘82322 7° +C,
" __ 4 13 _ 2 _ 317 _ 20191 _ 703 5554
fz 2275 n 175 77 ﬁ 77 50 77 + 1134 77 25240 77 4410 77 1575 77 +
T 17— om0 1"+ Sorere +Con +C,,
r 2 14 _ 2 13 1 12 _ 17 11 317 _ 20191 _ 703 5554
fz ~ 15925 n 2275 n ﬁ n ﬁ n 11340 77 227160 77 35280 77 11025 77 +
2486929 1941287 852338 1
+ 952560 77 - 396900 77 + 297675 77 + 7C 077 _'_(:177 +C2’
_ 2 _ 1 14 1 13 _ 17 317 11 _ 20191 10 _ 703 2777
f2 ~ 238875 77 15925 77 + 4550 77 6600 77 + 124740 77 2271600 77 317520 77 + 44100 77 +
2486929 7 1941287 852338 2
6667920 - 2381400 77 1488375 77 + KCOU + §C177 _|_(:277 +C3'
(4.18b)

Using the boundary conditions from (4.17) we obtain algebraic equations for C ,C ,C,,C_,

£,(0=0 = C, =0 f(0=0 = C, =0,
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for injection :

2 1 1 10103 15067 4717
fz(l) =0 = 79625 15025 | 4550 6600 + 124740 T Tsoo1200 317520 T 2400 T

2486929 2934797 3463321
+ 6667920 2381400 + 1488375 + C + C +C +C O’

ic,+1C, = - B, a7
2 2 1 17 101 161543 15067 . 9434
=0 = 15025 2275 ' 350 550 11340 1500120 _ 35280 | 11025 T
2486929 3928307 , 2610983
T gsos60 306000 1 207675 T C +C +C =0,
1 428661712069
;G +C =— 214880866200 *
for suction :
2 1 1 17 317 20191 703 2777
fz (1) =0 = 38875 15025 1 4550 6600 | 124740 2271600 37520 1 44100 T
2486929 1941287 852338
T See7920 2381400 | 14gess C + C +C +C =0,
sCo+,C =- 1257024126665096639400270 ’ (4.17b)
2 2 1 17 317 20191 703 5554
le(l) =0 = 505 227 30 50 T 11340 ~ 57160 3280 | 10z T

2486929 1941287 852338
+ 952560 396900 + 297675 + C +C +C 0

1 209955868999
;C,+C =- 214880866200 '

After trivial calculations we obtain

For injection : For suction :

1 1 _ 2550499316977 1 1 _ 2744265969017

5Co+2C, = 1671295626000 EC 0 + fcl ~  15041660634000 (4 18)
1 C +C =_ 428661712069 1C iC =_ 210050322127 )

2 214880866200 20 1~ 214880866200

C,=C,=0 C,=C,=0

and the coefficients CO,C »C 2,03 for the both cases are reduced at the table,

For injection : For suction :
C S 3975666965189 C _ __ 9208378891896
0o 626735859750 0o 2506943439000 4.19
C __ __38857161713549 C =+ 6464112922879 ( ' )
1 7520830317000 7520830317000
C,=C,=0 C,=C,=0
for injection :
_ 2 15 1 4 1 .13 17 12 01 11 10103 10 _ 15067 9 4.20a
2 79625 77 15925 77 4550 77 6600 77 124740 77 15901200 77 317520 77 ( ) )
+ 4717 + 2486929 7 2934797 + 3463321 .5 + 3975666965189 __3 _ 38857161713549 _ 2,
44100 77 6667920 77 2381400 77 1488375 3760415158500 77 15041660634000 77 !
for suction :
_ 2 15 1 14 1 13 17 12 317 1 20191 10 703 9
2 238875 77 15925 77 + 4550 77 6600 77 + 124740 77 2271600 77 317520 77 + (420b)
+ 2777 + 2486929 1941287 6 + 852338 1534729815316 3 + 6464112922879 _ 2
44100 77 6667920 77 "~ 2381400 1488375 77 2506043439000 15041660634000

Finally, our main results can be reduced by few simple analytical expressions to obtain U and V taking
into account the relationships (1.4) between dimensional and dimensionless quantities,
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"=yl oy =(x/ ), v =—-(0w/ dx)=~f(),

u=uV =V . (x/h)f'@m v=vV =V (),

f=f +f - Re+f -Re’+OqRe’), f'=f +f -Re+f -Re’+OqRe’)
dueto w(x,n) =xf(n).

Forinjection: » =y / h with h =h, and

3 2 ' 2
f,=-2n"+3n°, f =-6(n"-n), (4.213)
_ 2.7 186 3 1577 1861 2 r_2_6 6_5 3 1577 3722
fl_ﬁn 57 +E77 37877 31577’ f _577 57 +*77 12677 315 1
_ 101 10103 15067 4717
2 = 7965 11 15925 /1 4550 77 6600 n 124740 77 15901200 77 317520 77 44100 77
n 2486929 2934797 n 3463321 5 n 3975666965189 _ 38857161713549
6667920 2381400 77 1488375 3760415158500 15041660634000 !
P2 1 17 101 161543 15067 9434
2 = 15025 11 2275 77 ﬁ 77 © 550 77 11340 77 1590120 77 "~ 35280 77 11025 77 +
" 2486929 6 3928307 n 2610983 4 n 3975666965189 2  38857161713549
952560 396900 77 297675 1253471719500 7520830317000

Forsuction: » =y / h with h =h,, and
fo = 2773 - 3772’ fo, = 6(772 - 77)

.I: 2 7 1.6 3 1577 1861 .I:r 2.6 6 5 3 1577 3722

1= — sl +E77 37877 31577’ 12377 —s +*77 12677 =315 1
2 15 114 317 20191 703 2777
f, = 238875 1 wos ] T 4550 77 eeoo 77 T a0 U = 3571600 77 317520 77 * 2100 77 + (4.21b)
2486929 7 1041287 6 . 852338 5 1534729815316 3 , 6464112922879
T Soo7920 11~ 2381a00 1 T taseas 2506943439000 77 + 15041660634000 ’
f_ 2 42 3 1ot 0o e 20191 703 5554
2 = a5 11 2275 11 350 1 ﬁ "+ 1w U ~ 257160 n’ 35280 7’ * 1o '+
L 2480920 6 1041287 5 | 852338 4 _ 4604100445048 2 | 6464112922879
952560 396900 Uk 207675 1]~ 2506943439000 /] T 7520830317000 /1

Common Algorithm

Follow our scheme (Fig. 1) we have two chamber with the initial pressures P, and P, with P, >P,.
Hence, calculation formulas (4.21) are valid for the both champers with may be different values

h =h, and h2. Moreover, for the right chamber, the porous wall is the injection boundary, and for the left
chamber the porous wall is the suction boundary.

Firstly we should find the pressure drop AP =P —F, and the boundary velocity at the porous wall
= %ﬁ following (1.3). There should be used dimensional values P, P, .
The second step: using this value V we can calculate the Reynolds number Re and the function T with
all its derivatives under formulas (4.21).
The third step is to find new AP from (3.5),
1 2
AP _5(5/ h)A, A:Re(frZ ﬂ:rr) f'"
n nn nnn
Calculated using the expressions for
f=f +Ref +Re*f, f'=f+Ref +Re’f,
f"=f'+Re f'+Re*f) " =1"+Re f"+Re’f” (5.1)
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Defined by the formulas (4.8), (4.12). and (4.18a). Note, that to find AP it is necessary to obtain
ff, 6.0, £ f fnf f f fE”  notonly f,f, f,f, f)f) asitwasnecessary for U and V, see (4.21)

0’1’ 0’1’ 0’1’
For injection the coefficients Co:C1 taken from the left hand side column of the table (4.19) to find the
corresponding terms under the expressions,

fo =~@2n° =3n°), f, =-6(n" =), f, =627 -1, f, =-12;
;2 6 3 1577 2 3722
flzf 6_3775+§774 12677 a5 '
1577 3722

f1”:%775_6774+677 o 1t 3
f"=12n* - 24n° + 187" - ﬂ;

63
101 10103 15067 4717
2~ 79625 /. 15925 n 4550 77 6600 77 + 124740 77 + 15901200 77 "~ 317520 77 44100 77 +
n 2486929 7 2934797 6 n 3463321 5 n 3975666965189 3  38857161713549 2
6667920 n 2381400 n 1488375 n 3760415158500 15041660634000 '/ (5 9 )
P2 14 2 13 1 12 17 11 101 161543 9 15067 9434 .2a
2~ 15925 n 2275 n 350 n 550 n 11340 77 + 1590120 n "~ 35280 77 + 11025 77 +
n 2486929 6 3928307 5 n 2610983 __4 n 3975666965189 __ 38857161713549
952560 n 396900 n 297675 n 1253471719500 7520330317000 !
n_ 4 13 12 12 6 11 17 10 101 161543 15067 9434
2~ 2275 n ﬁ” ﬁn %77 1134 77 176680 77 4410 77 1575 77 +
n 2486929 5 3928307 i 10443932 _ 3 n 3975666965189 38857161713549
158760 79380 77 297675 626735859750 7520830317000 !
m 24 161543 7 15067 18868 __5
f _ﬁn ﬁn +ﬁ77 5 77 +12677 22085 11 7630 77 + 55 1 +
n 2486929 4 3928307 10443932 2 3975666965189
31752 19845 77 99225 626735859750

For suction we can simultaneously use the expressions (4.8), (4.12), and (4.18b) with the coefficients
CoC.i taken from the right hand side column of the table (4.19) to find the corresponding terms

ff, 6,6, £) £ £ f 1 177 E" under the expressions,

0 o' o'

f = (2n° - 31), fO' = 6(° — 1), f =6(2n-1, f, =12
' 2.6 6 3 1577 _ 2 3722
/=5 _3775—'_5774_%77 315 /D

1577 3722

" 12 5 4
f1:?77 — 677 +677 o 1T 3

5.2b)
m__ 4 3 1577 ., ( '
f"=12n" - 24n° + 18 — =
2 15 1 14 113 17 12 317 11 20191 703 9 2777
fz = 23ee7s 11 15025 /1 2550 1 5600 '/ + wa7a0 1~ 2271600 ’7 ~ 317500 11 44100 77 +
2486929 7 1941287 852338 1534729815316 __3 6464112922879 _ 2
6667920 "~ 2381400 77 1488375 77 "~ 2506943439000 15041660634000 '/
P2 14 2 13 1 12 17 11 317 10 20191 9 703 8 5554
2~ 15925 n 2275 m o+ 350 n 550 n 11340 n 227160 n 35280 n 11025 77 +
n 2486929 6 1941287 5 852338 4 4604189445048 2 6464112922879
952560 n 396900 297675 2506943439000 7520830317000 m,
n_ 4 13 2 12 6 11 17 10 317 20191 703 7 5554
2~ 2275 n 175 n 175 n 50 n 1134 77 " 25240 77 7T n 1575 77 +
n 2486929 5 1941287 4 n 3409352 3 9208378891896 n 6464112922879 (5,2b)
158760 n 79380 n 297675 n 2506943439000 n 7520830317000’
m_ 4 12 24 11 66 10 17 9 317 20191 703 11108
f _ﬁn ﬁn +ﬁ77 ?77 12677 315577 63077 + 525 77 +
I 2486929 4 1941287 n 3409352 2 9208378891896
31752 19845 77 99225 2506943439000

Substituting 7 =1 in (5.2a) — (5.2b) one obtains for injection,
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" m

!
f=1 f' =0 f = 6, f=-12;
fr 2 6 n 3 1577 | 3722 _ f" 12 1577 | 3722 _ 3407 f"_6_ 1577 1199 ,
1~ 5 5 2 126 @ 315 63 315~ 315 1 63 63 '
f= 2 1 11 101 10103 15067 4717 2486929 2934797

2 79625 15925 @ 4550 %—i_ 124740 ~ 15901200 317520 44100 = 6667920 2381400
n 3463321 | 3975666065180 _ 3885716171354 _ 0
1488375 = 3760415158500  15041660634000 !
fr— 2 2 117 n 101 n 161543 15067 n 9434 n 2486929 3928307 n 2610983 n
2 15925 2275 = 350 550 = 11340 = 1590120 35280 = 11025 952560 396900 297675

n 3975666965189  38857161713549 _ 0
1253471719500 7520830317000 !
n_ 4 12 6 17 101 161543 15067 | 9434 2486929 3928307 . 10443932
fz T 215 175 + 175 50 + 1134 + 176680 4410 + 1575 + 158760 79380 + 297675 +

+ 3975666965189 _ 38857161713549 5 4838552565389 _  42442704150389
4

626735859750 7520830317000 7520830317000 7520830317000 ’

f m_ 4 ﬁ E _ E £M 161543 15067 + 18868 + 2486929 3928307 10443932
2 175 175 175 5 126 22085 630 525 31752 19845 99225
+ 3975666965189 -8 2443762716071 — 22499310228071
626735859750 2506943439000 2506943439000 '

and for suction,

m

f=-1 f'=0 f =6 f =12;

r_ 2 6 [ 3 1577 | 3722 w_ 12 1577 | 3722 _ 3407 m_ 1577 _ 1199,
fl_* §+§ 126 + O’ fl_? 63+315_315’f1_6 63 63 '
f = 2 1 1 17 317 20001 703 2777 2486929 1941287

2 238875 15025 ' 4550 6600 + 124740 2271600 317520 44100 6667920 2381400

852338 1534729815316 6464112922879 O

1488375 2506943439000 15041660634000 !

f’: L_i i—£+ 317 20191 703 + 5554 + 2486929 1941287 + 852338

2 15925 2275 350 550 11340 227160 35280 11025 952560 396900 297675
4604189445948 6464112922879 __

2506943439000 7520830317000 !

fr_ 4 _ 2 6 17 317 20191 703 5554 2486020 1041287 340032 _
2 T 2275 175 ' 175 50 ' 1134 25240 4410 ' 1575 ' 158760 79380 297675
9208378891896 | 6464112022879 _ ~) 2856702157061 _ 17898362791061
2506943439000 ' 7520830317000 - 7500830317000 7520830317000 ’
.I:m: _ 24 86 17 317 20191 703 11108 | 2486929 _ 1941287 3409352 _
175 ' 175 5 ' 126 3155 630 = 525 31752 19845 99225
_ 9208378891896 _ o 174644137273 _ 20230191649273
2506943439000 ' 835647813000 835647813000 '

As a result we have for injection with Reynolds number Re = phV / u ,

f=1+0-Re+0-Re?=1 f'=0+0-Re+0-Re’=0,

fl! _ 6 4 307 3407 Re+ 42442704150389 Re fm _ 12 4 U® 1199 Re+ 22499310228071

7520830317000 2506943439000 R e

and for suction, with the Reynolds number Re = phV / u

f=-1+0-Re+0-Re*=-1 f'=0+0-Re+0-Re’ =0,

" 3407 17898362791061 m 1199 20230191649273
f 6 * 3 Re+ 7520830317000 Re f 12 e Re+ 835647813000 Re

. : AP, . :
Finally, we obtained formulas for — ™t for injection, with the Reynolds number Re, =
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A :Rel(fan_ﬁ:ﬂ)_fm —

nnn

_ 3407 _ 42442704150389 2 1199 _ 22499310228071 2\ _
- Rel(G 315 Re 7520830317000 Re )+ (12 Re 2506943439000 Rel) -

_ 1199 3407 22499310228071
=12+ 6 Re Re 315 Re 2506943439000 Re

821 1982166781271 821 49614092122271
- 12 Re N 19 2506943439000 Re 12 Re " 2506943439000 Re

_ 821 49614092122271
APinjection - E(X/ hl) ( Re 2506943439000 ‘Re )

(5.5a)

and AP o , for suction, with the Reynolds number Re, =

phZV .
i .

A:Re(ffz ff”) fm —

nm nnn

_ 1199 3407 20230191649273
= 12+6Re + = Re + 5 Re? +7835647813000 Re

_ 1577 20778825673 _ 1577 29268452280673
=-12+ Re + 35 835647813000 Re =-12+ Re + 835647813000 Re

_ 1577 29268452280673 1 42
Apsuction - E(X/ hz) ( —12+ 7Re + ~gaseara1a000 Rez)'

(5.5b)

The last two expressions define the new pressures at the both chambers

1 _p
P =P —|aP

1 _p(
injection |? PZ - P2 + ‘Apsuction , (56)

and the new pressure drop AP® =P® — P and the new velocity vV ©

AP(O) — P(O) _ P(O)
1 2 !
AP® = (Pl“’) ~|ap

) - (P +|aP

):

= AP(O) — E(X / h )2 (‘AP injection

injection suction

+ (h /h )2 ‘AP suction

)

o 821 _ 49614092122271 o 1577 29268452280673
AP injection = 12 - Re SE0E943439000 Re AP suction = =12 + 2~ Re + 5364783000 Re 21

VO =(k/ ﬂ)(AP(_l) 18 =K @) (WO h)(APY 5):

dimensional
= (k/ he)-v O [AP © _1(x/ ) ( + 0,/ 1) [P Lo

In the partial case, when the both channels have the same width, i.e. if h, =h, =h then,

AP® — APO —%(X/ h) (84 R, 2161608561 p o2 )

(5.7)

injection

141891750

D= (k/ hs)V© [AP(O _E(X/ hy’ (84 Re. 2161606561 o o2 )}

141891750

(5.7a)

In Section 5, all pressures are dimensionless, due to they were namely calculated this way. The only
exception is the value APd(If%ensmal used to calculate dimensional value V @ ; this pressure drop is
designated as dimensional.

It can be watched that the value A and, consequently, AP and V , at each step, depend only on Reynolds
number Re because all terms f, f, f,, f, £, €, € £ £7 7 f7 " calculated using (5.3a) — (5.3b) are

1 72 o 1 2 o
constants. Note, that the velocity is defined by real value of the pressure drop AP | and consequently, by
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the both dimensional pressures PP, to be found after multiplying the corresponding values above (5.6)
by the multipliers &/ / h and &/ / h,, follow to the inverse dimensionless transformation (1.4a), with

the choice hl, h2 in accordance with the considered chamber.
At the forth step we should compare our initial value of velocity V. = (k / )(P, —P,)/ ¢ calculated for

initial pressure drop with the velocity calculated for the new pressure drop found at the previous step. If
Ml) -V “”‘/ min(V .V @) < ¢, where ¢ is accuracy sufficient for the study, then the calculation by this

algorithm can be considered complete. If not, then we need to return to the 2" step with the new value V

there it is necessary to use dimensional pressures P, andP, using the transform (1.4a).

Note, that for the forth step (d) it is more convenient to use dimensionless values of pressures P, andP,

(see Eq. (1.4a))Y instead of dimensional velocity values V @ and V  due to the ratio
b0 v Ol minfy Oy 0 < 59)

is a dimensionless value and so the inequality (5.8) may be represented as,

(0)
r\/ W _y (0)‘ ‘(pl(l) _%pz(l) ) _\\ju) ,(pl(o) _:;Pz(O))
s = <& (5.9)
minlV P V) Linllpo _hp@) v (pO _ N p©
1 h, 2 'vD 1 h, " 2

At the final fifth step, after satisfying inequality (5.9), the velocity field Y = (U.V) for the both chambers
can be calculated using expressions (4.21a,b). The general block-scheme of the calculation algorithm is
presented in the Appendix.

Common Algorithm for two components flow

Let us consider the case when the water vapor moves in the air co-flow when the vapor is a small
component compared to air flow, i.e. when m <<m,, , where

mvapor - Mvapor / (MAir + I\/lvapor)’ rT.]Air - mvapor, (6.1)

and M M are the mass flow of the vapor and air, correspondingly. In any case the air flow is the

vapor ! vapor

main one and the steam moves due to the Stokes forces.

YRecall that at the end of Section 1 we agreed that for simplicity, we omitted the asterisks () at the superscripts.

. . .V o
Naturally, in the case m <<m,, the horizontal component of the vapor phase velocity ‘" coincides

with the velocity of air flow Vair . Since both walls are impermeable for the air component, the air flow is

a Poiseuille flow, with the parabolic profile of the velocity Vair :

1 oP
Vo = ———(y -y?
It can be seen that the velocity Vair satisfy to the boundary conditions, Vair (0) =V, () = O, and the
maximal velocity value

AJMS/Jan-Mar 2025/VVolume 9/lIssue 1 36



EXACT SOLUTION FOR TWO-DIMENSIONAL FLOW THROUGH CHANNELS WITH A PLANE PERMEABLE BOUNDARY
BETWEEN TWO CHAMBERS WITH UNIFORM SUCTION/INJECTION

v ==
Bu X (6.2)
is reached in the center of the channel. Namely we should use the value
1 0P

vapor (77) Air 2# 8x ( y y )

1 T ! n L4
= _mvaporv f) + My, Z_{T + [(fnz B ff’]’l) - fnnﬂ}}x(hy -¥9)
# (6.3)

instead of the value v =vV = -V -f(n) presented in (4.21). The signs, “—" and “+ “, correspond to the
1% (injection) and the 2" (suction) channels, accordingly. The function f(;) and its derivatives may be
found from (4.3) as follows,

f(n)(n) ~ fo(n) + fl(n) -Re+ fz(ﬂ) . ReZ, (64)

™ (k —
Where, n is the order of the derivative order, and the coefficients f” (k=012) are presented in (5.2a)

and (5.2b) for the both channels. Formula (6.3) is acceptable for common the case, i.e. when the vapor

m . . .
mass component  varer s not sufficiently low compared to the air co-flow mass component.
For the case when the vapor is a small component compared to air flow, i.e. when m <<m, , we may

neglect the first term, MoV - f(@), in (6.2) and the pressure drop

_ T 2 " m
— = [(f” —ff7) - fWJ (6.5)

in the second term due to the flow through a porous wall may be also neglected. Here, again, signs, “—"
and “+, correspond to the 1% (injection) and the 2" (suction) channels, accordingly. As a result, one
may use the simplified formula,

v APy —y?)

2u L (6.5)

The author is grateful to V. Sherbaum for the proposed problem.
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Input &, b, h. P and P
with 2 > P% Az

le
v

o

=)

E=F7,

1

= PO

n=1

AP=P-P, V=212

g

Re, =Vhp [ . Re, =“732p [ u

AJIMS/Jan-Mar 2025/VVolume 9/Issue

1

p = pm NO !
1 1 . R
5 ZR‘]“ Pl‘ = P] Pl = Pl / L/l‘ / h]‘
W B P B = BV I'hy)
n=n+1 : ) )
bt 2 o _ 40614002122271 | 1 .2
injecion §(I/h1) (12 B Rel 2506043430000 Rel)
_ i 1577 20265452250673 15 2 y
AP, i =3(2 /) (_12+ & Rez+mRez) g .48
=B AP . | TR kD, |
injection 2 2 suction |’
APH\:-P]H«_HM. I'EHZI'AP”’/{;.P]'—.P;‘}
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(1) h pl1) Z ¥ h *
s (P -2p)- e (-2 )

minl(R 2B (7 - 27

=
(=) |-—’

<&

D

YES

A 4
Calculation of velocity field u = (u,v)
Using (4.21). the injection — right chamber

Thesuction — left chamber

u=(wv): u=u'V=V-(z/R)fn). v=vV==V-f(); h=h, and b,
f=f+f Retf-Re+O(Re’). f'= f/+ f -Re+ f. - Re™+ O(Re’).

For injection: n=y/h
=2+ 8, f =-60r-n),

fra
h=gll =3l gl =g 4551l [ =30° =30 +30* — 3 + 55,
L=mmll ~mmll tamll —wwll trml el sl tawl t
2. 7 34797 23 75 15 55571617185 3
* e 1~ ol ¥ el s~ T
B=mamll’ — sl gl =gl + gl + sl ~ sl ozl +
sl ~ st e 1 e 1 e

Forsuction: 7=y / h,

f=2"-37, f =6(n" -n),
1877
S

1 18 17

1861 2 8T

s T 1,6 3 5 3 2.6 6_5 8 .4 ®Brr 2
h=mll =3l +ull —wll +eels =30 =30 +30 —ml +55

2 1 317 01981 10 08

fL= :&::ra']le_wnu*-ﬁao n eeco’]1:+1u.'w ' ~ =l Bk ']9+%”:+
e

Bl — i — o’ — =~ Tl +
e - M N

l

YES

A 4 ]

IFz <L

NO

This procedure should be provided for all discrete length values x € [0,L], where L is the length of

the chambers (see Fig. 1).
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