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ABSTRACT 
 

Abstract. This study investigates the structural properties of the Intersection Graph Γint(Zn) of the 

subgroups of Zn, focusing on cases where n = p, n = pq, n = p2 (p, q primes), and n = 2k (k a natural 

number). The research examines the connectedness of the graph. The results reveal unique properties of 

Γint(Zn) for each case of connectedness. Notably, for n = 2k, the graph is regular, complete, and exhibits 

rapid growth in size as k increases. This study provides a comprehensive understanding of the structural 

properties of Γint(Zn) and contributes to the existing body of knowledge on graph theory and group theory.   

 

Keywords: Univalent function, radius of star like and radius of convexity. 

 

INTRODUCTION  

 
The importance of graph theory as a field of study stems from the fact that it is a powerful tool for 

modeling and analyzing a number of algebraic theoretic concepts such as optimization processing and 

combinatorial problems, including in theoretical computer science. Graph theory finds applications in 

various real-world scenarios. Some recent references showcasing the application of graph theory include: 

• Social Networks: Analyzing social networks using graph theory helps in understanding relationships 

between individuals, identifying influencers, and predicting trends [6]. 

• Bioinformatics: Graph theory is used in bioinformatics for analyzing biological networks like protein-

protein interactions or gene regulatory networks [3]. 

• Transportation Networks: Modeling transportation systems as graphs aids in optimizing routes, traffic 

flow analysis, and infrastructure planning [2].  

• Subgroups of Zn: In the study of subgroups of Zn using the graph theoretic properties of intersection 

graphs, researchers analyze the structure and properties of subgroups within the additive group Zn. 

Subgroups are subsets of a group that form a group under the same operation as the original group. By 

representing these subgroups as vertices in an intersection graph and connecting them based on their 

intersections, researchers can gain insights into the relationships between different subgroups. An 

intersection graph is a type of graph that represents intersections between sets. In the context of subgroup 

analysis in group theory, intersection graphs play a crucial role in understanding the relationships 

between subgroups. Specifically, when studying subgroups of Zn (the additive group of integers modulo 

n), the intersection graph can be used to visualize how these subgroups intersect with each other. 
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• The intersection graph of Zn: This is a graph whose vertices correspond to the elements of Zn, and two 

vertices are subgroups in a cyclic group [1]. This paper explores the intersection graphs of subgroups in 

cyclic groups like Zn and investigates their structural properties using advanced graph theoretical 

techniques. 

 

METHODOLOGY 
 

This section provides an explanation of the methodology employed to find the properties of the 

intersection graph. The theoretic properties to be investigated are as follows: 

 

(1) Vertex degree 

(2) Completeness 

(3) Connectedness 

(4) Size of a graph 

(5) Independence number 

(6) Chromatic number 

(7) Clique number 

 

Subgroups of Zn. Theorem 1 (Subgroup Theorem)[4]: For a cyclic group Zn (where n is a positive 

integer), every subgroup is also cyclic, and for each positive divisor k of n, there is a unique subgroup of 

order k, which is generated by ⟨
𝑛

𝑘
⟩.  

It means for each factor of n, we have a unique subgroup. Therefore, assuming n has k + 1 factors, then 

Zn will have k + 1 subgroups, including k, non-trivial subgroups. 

 

For instance, if n = pq has a set of factors given by {1, p, q, n} where p and q are prime numbers, then we 

may have the following subgroups: 

 

• Subgroup 1: ⟨
𝑛

1
⟩ = ⟨n⟩ = {0} 

• Subgroup 2: ⟨
𝑛

𝑝
⟩ = ⟨q⟩ 

• Subgroup 3: ⟨
𝑛

𝑞
⟩ = ⟨p⟩ 

• Subgroup 4: ⟨
𝑛

𝑛
⟩ = ⟨1⟩ = Zn 

 

 

Example 2.1 

 

Let Z16 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}. 

 

The factors of 16 are: k = {1, 2, 4, 8, 16}. 

 

The corresponding subgroups are: 

 

⟨
16

1
⟩ = ⟨16⟩ = {0} 

⟨
16

2
⟩ = ⟨8⟩ = {0, 8} 

⟨
16

4
⟩ = ⟨4⟩ = {0, 4, 8, 12} 

⟨
16

8
⟩ = ⟨2⟩ = {0, 2, 4, 6, 8, 10, 12, 14} 

⟨
16

16
⟩ = ⟨1⟩ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} = Z16. 
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Lemma (Intersection of Cyclic Subgroups Lemma)[5]: If a and b are elements of a group G, then the 

cyclic subgroups generated by a and b have a non-trivial intersection if and only if a and b have a 

common divisor greater than 1. 

 

Example: 

 

Consider Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. 

 

The factors of 12 are: k = {1, 2, 3, 4, 6, 12}. 

 

The corresponding subgroups are: 

 

⟨
12

1
⟩ = ⟨12⟩ = {0} 

⟨
12

2
⟩ = ⟨6⟩ = {0, 6} 

⟨
12

3
⟩ = ⟨4⟩ = {0, 4, 8} 

⟨
12

4
⟩ = ⟨3⟩ = {0, 3, 6, 9} 

⟨
12

6
⟩ = ⟨2⟩ = {0, 2, 4, 6, 8, 10} 

⟨
12

12
⟩ = ⟨1⟩ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} = Z12. 

 

Definition: The intersection graph of a group is a graph whose vertices are the non-trivial subgroups of 

G, and two distinct vertices H and K are connected if H∩K ̸= {e}, denoted by Γint(G) [7]. 

 

Connectedness Methodology [1, 4]: Let Γ(V,E) be a graph with vertex set V = {v1, v2, v3, . . . , vn} and 

edge set E = {e1, e2, e3, . . . , em}. We use the following algorithm to determine whether the graph Γ(V,E) 

is connected: 

 

(1) Select any two distinct vertices vi, vj ∈ V , where i, j ∈ {1, 2, 3, . . . , 11} arbitrarily. 

(2) Using the graph definition, check whether there exists a path connecting vi and vj. 

(3) If a path exists, then the graph is connected; otherwise, it is not connected. 

 

RESULT 

 
Vertices Intersection Connection 

⟨4⟩ ∩ ⟨2⟩ = {0} 

⟨4⟩ ∩ ⟨1⟩ = {0} 

⟨2⟩ ∩ ⟨1⟩ = {0, 3} 

Not connected 

Not connected 

Connected 

 

Table 1 Vertices Connection Table 

 

 

 

 

 

 

 

 

4 

1 2 
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Figure 3.1: Intersection graph of Z4 

 

Vertices Intersection Connection 

 
⟨10⟩ ∩ ⟨5⟩ = {0} 

⟨10⟩ ∩ ⟨2⟩ = {0} 

⟨10⟩ ∩ ⟨1⟩ = {0}  

⟨5⟩ ∩ ⟨2⟩ = {0}  

⟨5⟩ ∩ ⟨1⟩ = {0, 5}  

⟨2⟩ ∩ ⟨1⟩ = {0, 2, 4, 6, 8}  

Not connected 

Not connected 

Not connected 

Not connected 

Connected 

Connected 

 

Table 2 Vertices Connection Table for Z10 

 

    

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Intersection graph of Z10 

 

Vertices Intersection Connection 

 
⟨10⟩ ∩ ⟨5⟩ = {0}  

⟨10⟩ ∩ ⟨2⟩ = {0}  

⟨10⟩ ∩ ⟨1⟩ = {0} 

⟨5⟩ ∩ ⟨2⟩ = {0}  

⟨5⟩ ∩ ⟨1⟩ = {0, 5}  

⟨2⟩ ∩ ⟨1⟩ = {0, 2, 4, 6, 8}  

Not connected 

Not connected 

Not connected 

Not connected 

Connected 

Connected 

 

Table 3: Vertices Connection Table for Z10 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Intersection graph of Z16. 

 

9 2 

1 5 

16 

4 2 

8 1 
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We begin our result and discussion section by analyzing the structures of the intersection graphs of Zn in 

terms of finding the numbers of edges it contain for the different values of n considered. The following 

three theorems gives the structures of the sizes of these graphs. 

 

DISCUSSION 
 

Theorem 3.1 If n is a prime number, then Γint(Zn) has no edge. 

 

Proof: Assume n is prime, then n has only 2 positive divisors: 1 and n. By Theorem 1, Zn has 

2 unique subgroups which are: 

 

    ⟨
𝑛

1
⟩ = ⟨n⟩ = {0} = {0} 

 

    ⟨
𝑛

1
⟩ = ⟨1⟩ = {Zn} 

 
Since V (Γint (Zn)) are the non-trivial subgroups of Zn, then Γint (Zn) contains only one vertex (Zn) with no 

edge. Hence proved. 

 

Theorem (3.1) reveals that when n is a prime number, the intersection graph Γint(Zn) has no edges. This 

result has profound implications for the structure of Zn, underscoring its unique subgroup arrangement. 

The absence of edges in Γint(Zn) indicates that Zn boasts a singular subgroup structure, devoid of 

intersections between its subgroups. This, in turn, reinforces the cyclic nature of Zn, as the graph’s 

emptiness reflects the group’s simple, cyclic architecture. The derivation of Zn’s properties from the 

graph’s properties is particularly insightful. The lack of edges in Γint(Zn) implies that Zn is characterized 

by an absence of non-trivial intersections between its subgroups. Furthermore, the graph’s emptiness 

suggests that Zn’s subgroup lattice is remarkably simple, with no complex relationships between 

subgroups. This simplicity is a direct consequence of the prime nature of n, which imposes a stringent 

structure on Zn’s subgroups. Theorem (3.1) is intimately aligned with the aim and objectives of this 

research. By investigating the graph-theoretic properties of Zn, we gain a deeper understanding of the 

group’s underlying structure. Theorem (3.1), in particular, provides a nuanced analysis of Zn’s subgroup 

arrangement, shedding light on the unique properties that emerge when n is prime. This result has 

significant implications for our comprehension of Zn’s behavior, particularly in the context of group 

theory and its applications. 

 

Theorem 3.2 If n = pq, where p, q are distinct numbers, then Γint(Zn) contains only 2 edges. 

 

Proof:  Assume n = pq, then n has 4 factors: 1, p, q, and n, with n = pq and p ̸= q. By Theorem 

1, Zn has the following subgroups: 

 

⟨n⟩ = {0} 

⟨
𝑛

𝑝
⟩ = ⟨q⟩  

⟨
𝑛

𝑞
⟩ = ⟨p⟩  

 
Zn is adjacent to ⟨q⟩ because Zn ∩ ⟨q⟩ = {q} ̸= {0}. 

Zn is adjacent to ⟨p⟩ because Zn ∩ ⟨p⟩ = {p} ̸= {0}. 

⟨q⟩ is not adjacent to ⟨p⟩ because by Lemma 1, gcd(p, q) = 1, thus ⟨q⟩ ∩ ⟨p⟩ = {0}. 

Therefore, Γint(Zn) has only 2 edges: Zn ∼ ⟨p⟩ and Zn ∼ ⟨q⟩, Hence proved. 
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Theorem (3.2) presents a fascinating result, stating that if n = pq, where p and q are distinct prime 

numbers and n has only four factors (1, p, q, and pq), then the intersection graph Γint(Zn) contains exactly 

two edges. This theorem offers valuable insights into the structural properties of Zn and its intersection 

graph. The presence of two edges in Γint(Zn) indicates that the subgroups of Zn intersect in a highly 

structured manner. Specifically, the 2 edges represent the non-trivial intersections between the subgroups 

generated by p, q, and pq. This result highlights the intricate relationships between the subgroups of Zn, 

which are dictated by the prime factorization of n. The derivation of Zn’s properties from the graph’s 

properties is once again enlightening. The presence of 2 edges in Γint(Zn) implies that Zn has a relatively 

simple subgroup lattice, with a limited number of intersections between subgroups. Furthermore, the 

graph’s structure suggests that the subgroups of Zn can be organized into a hierarchical arrangement, with 

the subgroups generated by p and q serving as the foundation. Theorem (3.2) is closely aligned with the 

aim and objectives of this research, as it provides a detailed analysis of the intersection graph of Zn. By 

examining the structural properties of Γint(Zn), we gain a deeper understanding of the underlying 

relationships between the subgroups of Zn. This result has significant implications for our comprehension 

of Zn’s behavior, particularly in the context of group theory and its applications. 

 

Theorem 3.3 If n = p2, then Γint(Zn) has only one edge. 

 

Proof: Assume n = p2, then n has only 3 factors: 1, p, and p2. 

By Theorem 1, Zn has 3 unique subgroups which are: 

 

⟨p2⟩ = {0} 

⟨
𝑝2

𝑝
⟩ = ⟨q⟩  

⟨
𝑝2

𝑝
⟩ = Zn  

 

⟨p⟩ ∼ Zn because p ∈ ⟨p⟩ ∩ Zn, with p ̸= 0, and this is the only edge since there are only two non-trivial 

subgroups. 

Hence, Γint(Zn) contains only 1 edge. 

 

Theorem (3.3) presents an intriguing result, stating that if n = p2, where p is a prime number, then the 

intersection graph Γint(Zn) has only one edge. This theorem provides a fascinating insight into the 

structural properties of Zn and its intersection graph. The presence of only one edge in Γint(Zn) indicates 

that the subgroups of Zn intersect in a highly restricted manner. Specifically, the single edge represents 

the non-trivial intersection between the subgroup generated by p and the subgroup generated by p2. This 

result highlights the rigid structure of Zn’s subgroups, which is dictated by the prime factorization of n. 

The derivation of Zn’s properties from the graph’s properties is once again enlightening. The presence of 

only one edge in Γint(Zn) implies that Zn has a highly simplified subgroup lattice, with minimal 

intersections between subgroups. Furthermore, the graph’s structure suggests that the subgroups of Zn are 

organized in a hierarchical manner, with the subgroup generated by p serving as the foundation. Theorem 

(3.3) is closely aligned with the aim and objectives of this research, as it provides a detailed analysis of 

the intersection graph of Zn. By examining the structural properties of Γint(Zn), we gain a deeper 

understanding of the underlying relationships between the subgroups of Zn. This result has significant 

implications for our comprehension of Zn’s behavior, particularly in the context of group theory and its 

applications. This result can be seen as a natural extension of Theorem (3.1), which states that if n is 

prime, then Γint(Zn) has no edges. In contrast to Theorem (3.2), which shows that n = pq results in a graph 

with four edges, Theorem (3.3) demonstrates that n = p2 yields a graph with only one edge, highlighting 

the significant impact of the prime factorization of n on the structure of Γint(Zn). The next theorem 

discusses the element that is common to all non-trivial subgroups of Zn for n = 2k. 

 

Theorem 3.4 If n = 2k, then every non-trivial subgroup of Zn contains the element 2k−1. 

 

Proof: Assume n = 2k. Then, by Theorem 1, n has (k + 1) factors as follows: 
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1, 21, 22, 23, 24, …, 2k. 

 

For each factor, we have a unique subgroup (by Theorem 1). Therefore, Zn has (k+1) subgroups, one for 

each factor, and hence k non-trivial subgroups as follows: 

 

⟨
𝑛

2
⟩ = ⟨

2𝑘

2
⟩ = ⟨2k-1⟩ = {0, 2k-1} 

⟨
𝑛

22
⟩ = ⟨2k-2⟩ = {0, 2k-2, (2)2k-2, (3)2k-2} 

 

⟨
𝑛

23
⟩ = ⟨2k-3⟩ = {0, 2k-3, (2)2k-3, …. , (7)2k-3} 

: 

: 

⟨
𝑛

2𝑘
⟩ = Zn 

 

 

This gives k non-trivial subgroups of Zn. Claim: 2k−1 ∈ ⟨
𝑛

2𝑙⟩, for all l = 1, 2, 3, . . . , k. 

Consider a non-trivial subgroup of Zn, 

⟨
𝑛

2𝑙
⟩  =  ⟨

2𝑘

2𝑙
⟩ = ⟨2𝑘−𝑙⟩, 

for some l = 1, 2, 3, . . . , k. 
 

Then ⟨
𝑛

2𝑙⟩ has 2𝑙 elements for all l = 1, 2, 3, . . . , k: 

⟨
𝑛

2𝑙
⟩ = ⟨2𝑘−𝑙⟩ = {0, 2𝑘−𝑙, (2) 2𝑘−𝑙, (3) 2𝑘−𝑙, …, (2𝑙 − 1) 2𝑘−𝑙} 

 

Since ⟨2𝑘−𝑙⟩ consists of elements of the form (x) 2𝑘−𝑙 with x between 1 and 2𝑙, then: 

 

(
2𝑙

2
) 2𝑘−𝑙∈ ⟨2𝑘−𝑙⟩ 

Thus:  

 

(
2𝑙

2
)(2𝑘−𝑙) ∈ ⟨2𝑘−𝑙⟩ 

⇒ (2𝑙 − 1)( 2𝑘−𝑙) ∈ ⟨2𝑘−𝑙⟩. 
⇒ (2𝑙 − 1 + k − l) = 2𝑘−𝑙∈ ⟨2𝑘−𝑙⟩. 

 

Since ⟨2𝑘−𝑙⟩ is arbitrary, this proves our claim, Hence the result. 

 

Theorem (3.4) presents an intriguing result, stating that if n = 2k, then every non-trivial subgroup of Zn 

contains the element 2𝑘−𝑙. This theorem provides valuable insight into the structural properties of Zn’s 

subgroups. The presence of the element 2𝑘−𝑙 in every non-trivial subgroup of Zn indicates that these 

elements play a crucial role in the subgroup structure of Zn. Specifically, the elements 2𝑘−𝑙  serve as a 

kind of ”skeleton” for the subgroups of Zn, as every subgroup must contain these elements. The 

derivation of Zn’s properties from the subgroup structure is once again enlightening. The presence of the 

elements 2𝑘−𝑙in every nontrivial subgroup of Zn implies that Zn has a highly structured subgroup lattice, 

with these elements serving as a foundation for the lattice. Theorem (3.4) is closely aligned with the aim 

and objectives of this research, as it provides a detailed analysis of the subgroup structure of Zn. By 

examining the properties of Zn’s subgroups, we gain a deeper understanding of the underlying 
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relationships between the elements of Zn. This result has significant implications for our comprehension 

of Zn’s behavior, particularly in the context of group theory and its applications. This result highlights the 

importance of the prime factorization of n in determining the subgroup structure of Zn. The fact that n = 

2k leads to a highly structured subgroup lattice suggests that the prime factorization of n plays a crucial 

role in shaping the internal structure of Zn. 

 

CONCLUSION 
 

In conclusion, this study has successfully investigated the structural properties of the intersection graph 

Γint(Zn) of the subgroups of Zn, with a focus on the cases where n = p, n = pq, n = p2 (p prime), and n = 2k 

(k a natural number). The study aimed to determine the connectedness of the above graphs. The 

objectives of the study were fully achieved, as the research provided a comprehensive analysis of the 

structural properties of Γint(Zn) for the specified cases. The findings revealed unique and intriguing 

properties of the graph. 
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