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ABSTRACT 

 
This paper investigates the preservation properties of numerical ranges under unitary equivalence 

transformations in operator theory. We establish that if operators T and S are unitarily equivalent via S = 

U ∗  TU , then their numerical ranges are identical: W (S) = W (T ). Beyond this fundamental equality, 

we prove that unitary equivalence preserves critical geometric properties of numerical ranges, including 

extreme points, exposed points, supporting lines, contact points, and the geometric multiplicity of 

boundary points. For normal operators, we demonstrate that numerical range equality characterizes 

unitary equivalence, providing a geometric criterion for this algebraic relation. Additionally, we show 

that the curvature of the boundary of numerical ranges remains invariant under unitary transformations. 

These results highlight the deep connection between the algebraic structure of operators and the 

geometric properties of their numerical ranges, contributing to our understanding of operator behavior 

under unitary equivalence.   

 

Keywords: Numerical Range, Unitary Equivalence, Normal Operators 

 

INTRODUCTION  

 
The study of numerical ranges and operator behavior under various equivalence relations represents a 

fundamental area in operator theory[1]. Building on the seminal work of Toeplitz (1918), the numerical 

range has proven to be a powerful tool for understanding operator behavior. Following Halmos (1962) 

and Goldberg and Tadmor (1982), we begin with the foundational definition: 

Definition 1.1: (Numerical Range) For T ∈ B (H), the numerical range is defined as: 

 
W (T ) = {⟨ Tx, x⟩  : x ∈ H, x  = 1} 

where ⟨ ·, ·⟩  denotes the inner product on H[2,3]. 

The geometric properties of numerical ranges provide crucial insights into operator behavior[4]. These 

properties often reveal deeper structural aspects of operators that may not be immediately apparent from 

algebraic considerations[5]. Our study focuses on how these properties transform under unitary 

equivalence. 
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Definition 1.2: (Unitary Equivalence). Operators T, S are unitarily equivalent if there exists a unitary 

operator U such that S = U ∗TU 

 

Definition 1.3: (Supporting Lines and Contact Points). A supporting line of a convex set C is a line that 

intersects C but does not pass through its interior[6]. The points where the supporting line touches C are 

called contact points. Supporting lines provide a geometric way to describe the boundary structure of W 

(T ), as they reveal how the numerical range interacts with its enclosing convex hull. This concept is 

fundamental to understanding the boundary behavior of numerical ranges, as emphasized by Stampfli 

(1970). 

Example 1.4: Suppose W (T ) is an elliptical region in the complex plane. Each supporting line 
corresponds to a tangent to the ellipse, and the contact points are the points of tangency. These 
points are crucial for understanding the geometry of W (T ), as they determine the shape and 
orientation of the ellipse. For instance, if: 

T =  
1  0 

, 

0  2 

then the supporting lines of W (T ) = [1, 2] are vertical lines at 1 and 2, with contact points corresponding 

to the eigenvalues 1 and 2. This observation is supported by the work of Ando (1973)[7]. 

Definition 1.5: (Extreme Points). An extreme point z of a convex set C is a point that cannot be 
expressed as a convex combination of other points in C. That is, 
 
z  = tx + (1 − t)y 

for x, y ∈ C, t ∈ (0, 1) 

In the context of the numerical range W (T ), extreme points often correspond to eigenvalues. When 

operator T has no eigenvalues, extreme points of the numerical range W (T ) correspond to: 

1. Approximate eigenvalues: λ ∈ σap(T ) where ∃{xn} with  xn  = 1 and  (T − λI)xn  
→ 0 

2. Boundary spectrum points: By Donoghue Jr (1957) theorem, extreme points lie in σ(T ) 

3. Supporting hyperplane zeros: Point z is extreme iff eiϕ(T -zI) + e−iϕ(T -zI)∗ has zero 
eigenvalue for some ϕ 

4. Geometric configurations: For shift operators, extreme points correspond to boundary of 

spectral disk 

 
The geometric definition remains unchanged; spectral interpretation shifts from exact to approximate 

eigenstructure. 
For normal operators, the extreme points of W (T ) coincide with the eigenvalues of T lying on the boundary of the 

convex hull of the spectrum, as noted by Halmos (1962). 

 

Example 1.6. Consider the diagonal matrix: 

T =  1  0  

0  2 
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The numerical range W (T ) is the interval [1, 2], and the extreme points are 1 and 2, which are precisely 

the eigenvalues of T . This result aligns with the spectral properties discussed in Horn and Johnson 

(1991). 

Definition 1.7: (Exposed Points). An exposed point of a convex set C is a point that lies uniquely on a 

supporting line of C. Exposed points are therefore ”visible” from outside the set, as they are the unique 

points of contact between C and some supporting line. In the context of the numerical range W (T), 

exposed points are boundary points that are uniquely determined by the geometry of W (T ), as explored 

in Gustafson (1974). 

Example 1.8. Consider the operator: 

T = 
1  0 

 

         0    i 

The numerical range W (T) is the line segment 1, i , in the complex plane. The endpoints 1 and i are both 
extreme points and exposed points because they lie on unique supporting lines. 

Definition 1.9: (Geometric Multiplicity of Boundary Points). The geometric multiplicity of a boundary 

point λ ∈  ∂W (T ) refers to the dimension of the set of unit vectors x satisfying: 

⟨ Tx, x⟩  = λ. 

This set is called the geometric fiber of λ, denoted by: 

Mλ(T ) = {x :  x  = 1, ⟨ Tx, x⟩  = λ}. 

 
The geometric multiplicity reflects how ”rich” the boundary point is in terms of the underlying vector 

space structure. This concept has been studied extensively in the context of operator theory, particularly 

in Kendall (1975). 

Example 1.10. Consider the operator: 

T =   
1  0 

. 

0  1 

Here, W {T} = {1}, and every unit vector x satisfies Tx, x = 1. Thus, M1(T ) spans the entire unit sphere, 

and the geometric multiplicity is infinite. This example highlights the connection between geometric 

multiplicity and the degeneracy of eigenvalues, as discussed in Bhatia (1997). 

Main Results 

 
Theorem 2.1 (Equality of Numerical Ranges Under Unitary Equivalence). If T and S are unitarily 

equivalent via S = U ∗TU, then their numerical ranges are equal: 

W (T ) = W (S). 

Proof. Let x ∈ H be a unit vector (   x   = 1). For S = U ∗TU , compute: 

⟨ Sx, x⟩  = ⟨ U TUx, x⟩  = ⟨ TUx, Ux⟩ . 

Since U is unitary, it preserves the norm, so  Ux   =   x   = 1. Moreover, the map x Ux is a bijection on the 

unit sphere. Thus: 

{⟨ Sx, x⟩  :  x  = 1} = {⟨ Ty, y⟩  :  y  = 1}. 

This shows that W (S) = W (T ), completing the proof. 
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Example 2.2: Consider the matrices: 

 

 

T =

 
1  0

 

, S =

 
2  0

 

. 

 
These operators are unitarily equivalent via the permutation matrix: 

U =   
0  1 

. 

1  0 

Both T and S have the same numerical range: 

W (T ) = W (S) = [1, 2]. 

This example demonstrates that even when the eigenvalues are permuted, the numerical range remains 

unchanged under unitary equivalence. 

Theorem 2.3: (Preservation of Extreme and Exposed Points). Under unitary equivalence S = U ∗ TU, the 

extreme points and exposed points of the numerical range W (T ) are preserved. That is, any extreme 

point or exposed point of W (T ) corresponds to an extreme point or exposed point of W (S), respectively. 

 
Proof. Let λ be an extreme point of W (T ). Then there exists a unit vector y such that: 

⟨ Ty, y⟩  = λ, 

and λ cannot be expressed as a convex combination of other points in W (T ). For x = U ∗y, we have: 

⟨ Sx, x⟩  = ⟨ TUx, Ux⟩  = ⟨ Ty, y⟩  = λ. 

 
If λ were not an extreme point of W (S), it would contradict the extremality of λ in W (T ). A similar 

argument applies to exposed points, as they correspond uniquely to supporting lines, which are also 

preserved under unitary equivalence. 

Example 2.4: Consider the operator: 

T =   
1  0 

. 

0     i 

The numerical range W (T ) is the convex hull of 1, i} , forming a line segment in the complex plane. The 

endpoints 1 and i are both extreme and exposed points. Under unitary equivalence via: 

U =    1 
  

1  1
  

√
2 

–I  i
 

the transformed operator S = U ∗ TU has the same numerical range W (S) = W (T ), and the endpoints 1 
and i remain extreme and exposed points.

 
Theorem.2.5  (Preservation of Supporting Lines and Contact Points). Under unitary equiv- alence S = U 

∗ TU, the supporting lines of the numerical range W (T ) and their contact points are preserved. 

Specifically, any supporting line of W (T ) corresponds to a supporting line of W (S), and the contact 

contact points remain identical. 

Proof. A supporting line at angle θ corresponds to the minimum eigenvalue of the Hermitian operator: 



 Numerical Range Distortion Under Unitary Equivalence 

AJMS/Apr-Jun 2025/Volume 9/Issue 2                                                                                                   

  

e−iθT + eiθT ∗. 

For S = U ∗TU , this operator becomes: 

 

e−iθS + eiθS∗ = U ∗(e−iθT + eiθT ∗)U. 

Since unitary transformations preserve eigenvalues and eigenvectors, the minimum eigenvalue and its 
corresponding eigenvector remain unchanged. Thus, the supporting lines and their contact points are 
preserved. 

Example 2.6: Consider the operator: 

T =  
1  0 

 

0  2 

The numerical range W (T ) = [1, 2] has vertical supporting lines at 1 and 2. Under unitary equivalence 
via: 

U =   
0  1 

 

1  0 

the transformed operator S = U ∗TU has the same numerical range W (S) = [1, 2], and the supporting 

lines at 1 and 2 remain identical 

Theorem 2.7: (Preservation of Geometric Multiplicity of Boundary Points). Under unitary 

equivalence S = U ∗ TU, the geometric multiplicity of boundary points of the numerical range is 

preserved. For any boundary point λ ∈  ∂W (T ), the dimension of the set of unit vectors x satisfying 

⟨ Tx, x⟩  = λ equals the corresponding dimension for S. 

Proof. The geometric fiber of a boundary point λ is defined as: 

Mλ(T ) = {x :  x  = 1, ⟨ Tx, x⟩  = λ}. 

Under unitary equivalence S = U ∗TU , the transformation x '→ Ux maps Mλ(T ) bijectively onto Mλ(S). 

Since U is unitary, it preserves norms and inner products, ensuring that the dimension of Mλ(T ) equals 

that of Mλ(S). 

 
Example 2.8: Consider the operator: 

T =   
1  0 

. 

0  1 

The numerical range W (T ) = {1} consists of a single point, and every unit vector x satisfies Tx, x = 1. 

Under unitary equivalence via any unitary matrix U , the transformed operator S = U ∗TU has the same 

numerical range W (S) = {1} , and the geometric multiplicity remains infinite. 

Theorem 2.9: (Spectral Consequences of Numerical Range Equality for Normal Operators). 

 
For normal operators, unitary equivalence is characterized by numerical range equality: 

T normal, W (T ) = W (S) =⇒ T ∼= S, 

where ∼= denotes unitary equivalence. 

Proof. We proceed in several steps, utilizing the special properties of normal operators. 
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Since T is normal (TT ∗ = T ∗T ), the spectral theorem guarantees that there exists a spectral measure ET such 
that: 

 

 

 

 

T = 

∫ 

λdET (λ), 

           σ(T ) 

where σ(T ) denotes the spectrum of T . Similarly, for S, we have: 

S = ∫ µ dES(µ). 

σ(S) 

For a normal operator T , the numerical range W (T ) coincides with the convex hull of its spectrum: 

W (T ) = conv(σ(T )). 

This result follows from the spectral theorem and the fact that: 

⟨ Tx, x⟩  = 

∫ 

λd⟨ ET (λ)x, x⟩ , 

for any unit vector x. A similar statement holds for S. 

Given W (T ) = W (S), it follows that: 

conv(σ(T )) = conv(σ(S)). 

Thus, the spectra σ(T ) and σ(S) must coincide as sets, including multiplicities. 

Let {λk}n denote the distinct eigenvalues of T (finite or countably infinite). For each k, 

define the eigenspaces: 

Ek = ker(T − λkI), Fk = ker(S − λkI). 

Since W (T ) = W (S), the geometric multiplicity of each eigenvalue is preserved. Therefore: 

dim(Ek) = dim(Fk), 

 
for all k. 

Define a unitary operator U : H → H by: 

U =       Uk, 

k 

where each Uk : Ek → Fk is a unitary operator mapping the eigenspace Ek of T onto the eigenspace Fk of 

S. 

For any x ∈ Ek, we have: 

(U ∗SU )x = U ∗S(Ukx) = U ∗(λkUkx) = λkx = Tx. 
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Since {Ek} spans H (by the spectral decomposition of T ), it follows that: 

U ∗SU = T. 
The construction of U ensures that it is unique up to unitary operators commuting with T , as follows 

from the spectral theorem. Thus, T and S are unitarily equivalent. 

Therefore, if T is normal and W (T ) = W (S), then T ∼= S 

Example 2.10. Consider the following non-diagonal normal matrices: 

T =

  
1 i

 

, S =

  
1  −i

 

 

−I   1    I       1 

Both T and S are normal because they satisfy TT ∗ = T ∗T and SS∗ = S∗S. Their eigenvalues can be 

computed as follows: 

σ(T ) = σ(S) = {1 + i, 1 − i}. 

The numerical ranges of T and S are identical and are given by the convex hull of their eigenvalues: 

W (T ) = W (S) = {z ∈ C : Re(z) = 1, I m(z) ∈ [−1, 1]}. 

To explicitly construct the unitary equivalence, note that the eigenvectors of T and S correspond to their 

eigenvalues. For T , the eigenvectors associated with λ = 1 + i and λ = 1 i are: 

 
1 
 

1
 

 1 
  

1
  

v1 = √
2 i  

, v2 = √
2  −i  

 

For S, the eigenvectors are: 

1 
  

1
 

 1 
 

1
  

w1 = √
2  −i 

,   w2 = √
2     i  

 

Define the unitary operator U that maps the eigenvectors of T to those of S: 

U =  
0  1 

. 

           1  0 

It can be verified that S = U ∗TU , demonstrating that T and S are unitarily equivalent. This example 

illustrates the theorem’s conclusion for non-diagonal normal matrices. 

Definition 2.11 (Curvature of the Boundary of a Numerical Range). The curvature κT (λ) of the boundary 

∂W (T ) at a point λ measures how rapidly the tangent direction changes as one moves along the 

boundary near λ. 

For smooth portions of ∂W (T ), the curvature can be computed using differential geometry techniques 

applied to the parametric representation of ∂W (T ). If z(t) parameterizes ∂W (T ) in the complex plane, 

the curvature is given by: 

κ (λ) = 
|z (t)| 

, 

|z′′(t)| 
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evaluated at the point λ = z(t0). 

Proposition 2.12:  (Preservation of Boundary Curvature Under Unitary Equivalence). Un- der unitary 

equivalence S = U ∗ TU, the curvature of the boundary ∂W (T ) at any point is preserved. Specifically, if 

κT (λ) denotes the curvature of ∂W (T ) at a boundary point λ, then: 

κT (λ) = κS(λ), 

where κS(λ) is the curvature of ∂W (S) at the corresponding boundary point. 

Proof. To prove the proposition, we proceed as follows: 

zT (t) = ⟨ Tx(t), x(t)⟩ , 

where x(t) is a parameterization of the unit sphere   x   = 1. 

The curvature κT (λ) at a boundary point λ = zT (t0) is given by: 

κ (λ) = 
|zT (t)| , 

|zT (t)| 

evaluated at t = t0. 

For S = U ∗TU , compute ∂W (S) using the same parameterization x(t). Since S = U ∗TU , we have: 

zS(t) = ⟨ Sx(t), x(t)⟩  = ⟨ TUx(t), Ux(t)⟩  = zT (t). 

Thus, ∂W (S) coincides with ∂W (T ), and their parametric representations are identical. 

Because zS(t) = zT (t), the first and second derivatives of zS(t) match those of zT (t). There- fore: 

κ (λ) = 
|zS (t)| = 

|zT (t)| = κ (λ). 

|zS (t)| |zT (t)| 

This shows that the curvature at any boundary point is preserved under unitary equivalence. Thus, the 

conjecture is proven. 

Example 2.13: Consider the normal matrix: 

T = 
1 i  

. 

    −i  1 

The numerical range W (T ) is the vertical line segment: 

W (T ) = {z ∈ C : Re(z) = 1, Im(z) ∈ [−1, 1]}. 

The boundary ∂W (T ) consists of two endpoints (1+i and 1  i) and a straight line connecting them. The curvature 
at all interior points of ∂W (T ) is zero, reflecting the flatness of the line segment. 

Under unitary equivalence via: 

U =    
0  1 

, 

1  0 

the transformed operator S = U ∗TU has the same numerical range W (S) = W (T ), and the curvature 
remains zero along the entire boundary. 
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CONCLUSION 

In this study, we have shown that unitary equivalence preserves not only the numerical range of an 

operator but also its deeper geometric and spectral characteristics. The invariance of extreme points, 

exposed points, supporting lines, and geometric multiplicity highlights the robustness of the numerical 

range as a unitary invariant. Notably, for normal operators, equality of numerical ranges fully 

characterizes unitary equivalence, underscoring the strong link between spectral properties and geometric 

representations. These results reinforce the significance of numerical ranges in operator theory, 

particularly as a tool for understanding equivalence classes and invariant features of bounded linear 

operators on Hilbert spaces. 
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Let T  denote the class of function  zf  defined by  

    





2

.2.1,0,
k

k
k

k Nkazazzf 
                                                                                   (1.1) 

Which are univalent and analytic in the open unite disc  
 1:  zzU

 . 

 

Definition 1.1:  The class of starlike function of order µ denote by  *S  if    Tzf   and satisfies the 

condition 

 
   Uz
zf
zfz








 

;10,Re 
 ,                                                                                                  (1.2) 

Definition 1.2 : The class of convex function of order µ denote by  C  if   Tzf   and satisfies the 

condition  

 
   .,10,1Re Uz
zf
zfz













 
                                                                                         (1.3) 

Note that   ** 0 SS   is the class of starlike functions and   CC 0  is the class of convex functions. 

Ruscheweyh [5] defined the differential operator 
 zfRn

 as follows 

 

   ,0 zfzfR   
   zfzzfR 1

 

        zfRnzfRzzfR  


 11
  ,,

2

k
k

k

zaKnz 




 
                                                             (1.4)                                

where 
  UzNNn  ,00 

and  

   
 !1!

!1
,





kn
kn

Kn
.                                                                                                                              (1.5) 

Al-Oboudi  [2] defined  the differential operator  
 zfDn

   by: 

   ,0 zfzfD   
         zfzzfzfDzfD   1

 

    zfDDzfD nn 1 

    ,,,11 0
2

UzNnzakz k
k

k

n  





                                               (1.6) 

Lupas [3] defined the generalized differential operator  
 zfRDn

,  as linear combination of Ruscheweyh 

operator and Al-Oboudi differential operator by: 

       zfDzfRzfRD nnn
  1, .                                                                    (1.7) 
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By simple calculate, we have 

          k
k

k

nn zaknkzzfRD 





2

, ,111 

.                                                                   (1.8)  

From equation (1.7), we note that  

   zfzzfRD n 1
,                                                                                                                                 (1.9) 

Now, by taking different value of the parameters ,,n  and , we get some special cases of the operator 

 zfRDn
,  , for example. 

 

i. 
   zfDzfRD nn

 1,  studied by Al-Oboudi [2]; 

ii. 
 zfSRD nn 1,1 , studied by Sâlâgean [6]; 

iii. 
   zfRzfRD nn 0, , studied by Ruscheweyh  [5]. 

 

In 2014, Lupas and Andrei [4] use the generalized differential operator 
 zfRDn

,  to define the class 

 
nS ,  , which consists of all function   Tzf    satisfies the condition 

  
 

 10;,Re
,

, 










 




 Uz
zfD

zfDz
n

n

,                                                                                         (1.10) 

where 
 zfRDn

,  given by (1.8) .  

By specializing the parameters ,,n  and  , in the definition of the class 
 

nS ,  can be reduced know 

classes  : 

 

i.   
   

TS0
,   studied by Silverman [7]; 

ii.  
    CS 1

,  studied by Silverman [7]; 

iii.  
    

SSn
0,  studied by Ahuja [1]; 

iv. Put  0 ,   we get the class defined as follows:  

v. 

  
 

 10;,,Re 0 










 




 UzNn
zfD
zfDz

n

n

; 

vi. Put 1 and   1 , we get the class defined as follows 

vii. 

  
 

 10;,Re 










 

 Uz
zfS

zfSz
n

n

. 

 

The problem of coefficient estimates is one of interesting problems which was studied by researchers for 

certain classes in the open unit disc. Closely related to this problem Using the results of  Lupas  and  

Andrei  [4] to determine radius of star likeness and radius of convexity details with some application of 

computers software . 

 

RADII OF STARLIKENESS AND CONVEXITY 

 

In order to prove our results, we need the following Lemma due to Lupas and Andrei [4] : 

 

Lemma 2.1: 
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Let the function  zf defined by (1.1) belong to the class T , if  

          ,1,111
2

 



k

n

k

aknkk
                                                                (2.1) 

 then
   

nSzf ,
, where 10  and  kn,  defined by (1.5). The result is sharp for the function 

 
           .2,

,111

1





 kz

knkk
zzf k

n 


                                                             (2. 2) 

 

Now we study radius of starlikeness for the function   Tzf   belong to the classes 
 

nS ,  by obtaining 

the coefficient estimates. 

 

Theorem 2.1: 

Let the function  zf  given by (1.1) be in the class 
 

nS , ,then  zf  is starlike of order  10   

in 
  ,,,,.,1 knrz 

 , where 

            
  

1
1

21 1
,1111

inf,,,,,


 












kn

k k
knkk

knr



.                                           (2.3) 

The result is sharp for the function  zf defined by (2.2). 

       

Proof 

 

To find the radius of starlike of order α, it sufficient to show that  

 
  


11
zf
zfz

  .                                                                                                                               (2.4) 

 

 

By simple calculations, we get 

 
 

   
 

 
.

1

1
1

2

1

2

1


























k

k
k

k

k
k

za

zak

zf
zfzfz

zf
zfz

                                                                                  (2.5) 

Thus equation (2.4) satisfies if 

 

1
1

1

2










 




 k

k
k

za
k



.                                                                                                                          (2.6) 

Since 
   

nSzf ,
, Lemma 2.1 conforms that 

 

         
,1

1
,111

2








k

n

k

a
knkk




                                                                           (2.7) 

 

hence, from (2.6) and (2.7), we have 

 

         


















 

1
,111

1
1 knkk

z
k n

k

.                                                                    (2.8) 
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Solving (2.8) for 
z

, we get 

 

          
  

1
1

1
,1111 

















kn

k
knkk

z




.                                                                     (2.9) 

Thus, the proof of Theorem 2.1 is completed. 

Put 0n  in Theorem 2.1, we get the following corollary 

 

Corollary 2.1:  

Let the function   zf  defined by (1.1) be in the class  T , Then   zf   is starlike  in  
 ,,2 krz 

, 

where 

    
    .2,

1
1

inf,,
1

1

22 














k

k
k

kr
k

k 



                                                                                      (2.10) 

 

The result is sharp for the function 

     .2,
1





 kz
k

zzf k




                                                                                                             (2.11) 

 

Put 3k  in Corollary 2.1, we get 

 

 

Example 2.1: Let the function  

  3
3

2
2 zazazzf 

                                                                                                                         (2.12) 

be in the class  T , Then  zf  is starlike in  
 ,3rz 

, where 

    
  








13
31

,3r
                                                                                                                    (2.13) 

 

In Figure 1, graph  radius of starlike in the above example by Wolfram Alpha.  

                                                                                                               

 
 

Figure-1, radius of starlike function defined by (2.12)   

 

Put 0  in Theorem 2.1, we get the following  corollary: 

 

Corollary 2.2  
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Let the function   zf  given by (1.1) be in the class 
 

S
, then   zf   is starlike  in  

 ,,4 nkrz 
, 

where 

      
    .2,
1

,1
inf,,

1
1

24 















k

k
knk

nkr
k

k 



                                                                            (2.14) 

The result is sharp for the function 

       .;2,
,

1
Uzkz

knk
zzf k 








                                                                                     (2.15) 

Put 3k  in Corollary 2.2, we get the following example:  

 

Example 2.2: Let the function  zf  defined by (2.12) be in the class 
 

S
, then  zf  is stalike in  

 ,,5 nrz 
, where 

      
  








132

2131
,,5

nn
nr

                                                                            (2.16) 

 

The result is sharp for the function  

                                     

   
     .,

312
12 3 Uzz
nn

zzf 








                                                 (2.17) 

 

Theorem 2.2: 

 

 Let 
   

nSzf ,
. Then  zf  is convex of order  10   in 

  ,,,,.,6 knrz 
 , where 

 

            
  

1
1

26 1
,1111

inf,,,.,
















kn

k kk
knkk

knr





.                                         (2.18) 

 

 

The result is sharp for the function 

 
           2,,

,111
1





 kUzz

knkkk
zzf k

n 


.                                             (2.19) 

Proof: 

By using the same technique which used in the proof of Theorem 2.1, we can show that  

 
  



1
zf
zfz

    for  6rz 
      

 

which give the assertion of Theorem 2.2. 

Put 0n  in Theorem 2.2, we get the following corollary 

 

Corollary 2.3: 

 

Let the function   zf  given by (1.2) be in the class  T , then   zf   is convex of order  10   in 

 ,,7 krz 
, where 

    
    .2,

1
1

inf,,
1

1

27 














k

kk
k

kr
k

k 



.                                                                                    (2.20) 
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The result is sharp for the function 

     .,2,
1

Uzkz
kk

zzf k 







                                                                                                (2.21) 

Put 2k  and 0 in Corollary 2.3, we get 

 

Example 2.3: Let the function defined by (2.12) be in the class 
T , then  zf  is convex in  

 8rz 
, 

where 

   
 








22
12

8r
                                                                                                 (2.22) 

 

The result is sharp for the function 

   .,
4
1 2 Uzzzzf 

                                                                                                                   (2.23) 

 

In figure 2 , graph the sharp function in Example 2.3 by Complex Tool program  

 

                                          
Figure 2: the image of unit disc under the function (2.23) 

 

Put 3k  in Corollary 2.3, we get 

Example 2.4: Let the function defined by (3.12) be in the class  T , then  zf  is convex in  

 ,9rz 
, where 

    
  








133
31

,9r
                                                                                                                   (2.24) 

 

The result is sharp for the function 

     .,
33
1 3 Uzzzzf 







                                                                                                          (2.25) 

 

In Figure 3, graph  the radius of convex in the above Example  by Wolfram Alfa program, we get  



 Numerical Range Distortion Under Unitary Equivalence 

AJMS/Apr-Jun 2025/Volume 9/Issue 2                                                                                                   

 
Figure 3: radius of convex function defined by (2.25) 

 

Put 0  in Corollary 2.3, we get the following corollary 

 

Corollary 2.4 

Let the function   zf  given by (1.1) be in the class  T , Then   zf   is convex  in  
 ,9 krz 

,  

   
 

1
1

229 1
inf,



 











k

k k
k

kr




 .                                                                                 (2.26) 

 

The result is sharp for the function  zf  given by (2.21). 

 

RESULT 

 
The result in Corollary 2.4 given the known result of Silverman [7, Theorem 8] 

 

CONCLUSION 
 

This work is a generalization for well-known radius problem of univalent functions and gave some 

examples. 
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