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ABSTRACT
In this paper, we have established the some results on modified topological metric spaces.
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INTRODUCTION

In this discussion of some equivalence metrization 
theorems, modified some sequence theorems 
and modified double sequence theorems have 
been studied by Nigata.[1] We also defined metric 
topologies, before that, however, we want to give 
a name to those topological spaces.

Definition of T1 spaces

A T1 – space is a topological space in which given 
any pair of disjoint points, each has a neighborhood 
which does not contain the other.
It is obvious that any subspace of T1 – space is also 
a T1 – space.

Definition

A topological space (X, T) is said to be metrizable 
if there is a metric d on X that generates T, 
topologies are metric topologies.

Theorem 1

If a topological space τ then
1.1 is a T1-space
1.2 has a neighborhood basis of {Un (p): n = 1,2……}
1.3 { ( )} ( ) ( )q U p H q H pn n n∉ ⇒ ∩ = 
1.4 {q ∈ Hn (p)} ⇒ Hn (q) ⊂ Un (p) then τ is 

metrizable.

Theorem 2

If a topological space τ then
2.1 is a T1-space
2.2 for every p ∈ τ then there exists a neighborhood 

basis {Vn (p): n = 1,2,3…}
2.3 given that Vn (p) there exits m > n and m = m 

(n,p) such that Vm (q) ∩ Vm (p) ≠ ϕ ⇒ Vm (p) 
then τ is metrizable.

Proof: To show that the conditions of Theorem 
1, imply the conditions of Theorem 2, we have 
established only (2.3) of Theorem 2.
If (2.3) does not hold.

Let q ∉Un (p) and Hn (q) ∩ Hn (p) ≠ φ� (2.4)

Let s ∈ Hn (q) ⇒ Hn (s) ⊂ Un (q) and s ∈ Hn (q) ⇒ 
q ∈ Hn (s) which implies
Hn (q) ⊂ Un (s) also s ∈ Hn (p) ⇒ p ∈ Hn (s) which 
implies as Hn (p) ⇒ Un (s)

Therefore, q ∈ Hn (s) ⊂ Un (p)� (2.5)

Which is a contradiction of (2.3) is established 
and therefore the proof is completed.
We studied by the proof given by Martin[3] that is 
contradiction of Theorem 1 imply conditions of 
Theorem 2. We have only to establish (2.3).
Proof: Without loss of geniality we assume that

U p U pn n+ ⊂1( ) ( ) � (2.6)

For all n ∈ N and p ∈ H.

Set Vn (p) = H1 (p) ∩ H2 (p) ∩ …… Hn (p)� (2.7)

For all n ∈ N and p ∈ H.
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The sequence {Un (p)} and {Vn (p)} will satisfy 
the conditions of (2.2), (2.3), and (2.4).
By (2.2) there exists m m > n with

U p V pm n( ) ( )⊂ � (2.8)

Similarly, there exists k > m such that

U p V pm n( ) ( )⊂ � (2.9)

Suppose Vk (q) ∩ Vk (p) ≠ φ� (2.10)
By (2.3) which implies that
q ∈ Uk (p) But (2.8) we have q ∈ Vm (p) from (2.4).

V q U pm m( ) ( )⊂ � (2.11)

Combining (2.7), (2.8), and (2.10) we have Vk (q) 
⊂ Vn (p) which proves (2.3).
From (2.4), we have Vn (p) ⊂ Un (p) if a 
neighborhood U(p) of p is given science from the 
existence of n such that Un (p) ⊂ U (p) and hence 
Vn (p) ⊂ U (p). Thus, Vn (p) is neighborhood basis 
at p., i.e. (2.2) is proved.
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