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ABSTRACT

In this paper, we have established the some results on modified topological metric spaces.
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INTRODUCTION

In this discussion of some equivalence metrization
theorems, modified some sequence theorems
and modified double sequence theorems have
been studied by Nigata.l'! We also defined metric
topologies, before that, however, we want to give
a name to those topological spaces.

Definition of 7, spaces

AT, —space is a topological space in which given
any pair of disjoint points, each has a neighborhood
which does not contain the other.

It is obvious that any subspace of T, — space is also
a T, — space.

Definition

A topological space (X, 7T) is said to be metrizable
if there is a metric d on X that generates 7,
topologies are metric topologies.

Theorem 1

If a topological space 7 then

1.1is a T -space

1.2 hasaneighborhoodbasisof {U (p):n=1,2...... }

1.3 {qeU,(p)i=H,(9)nH,(p)=9

1.4 {qg € H (p)} => H (9) € U (p) then 7 is
metrizable.
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Theorem 2

If a topological space 7 then

2.11isa T -space

2.2 for every p € tthen there exists a neighborhood
basis {V (p):n=1273...}

2.3 given that V (p) there exits m > n and m = m
(np)suchthat V. (g) NV (p)£¢=V (p)
then 7 is metrizable.

Proof: To show that the conditions of Theorem

1, imply the conditions of Theorem 2, we have

established only (2.3) of Theorem 2.

If (2.3) does not hold.

LetqeU (p)and H (9) N H (p) # ¢ (2.4)

Letse H (9)=>H (s)c U (g)andse H (q) =
g € H (s) which implies

H (¢9)c U, (s)alsos€ H (p)= pe H (s) which
implies as H (p) = U (s)
Therefore, qe H (s) C U, (p) (2.5)
Which is a contradiction of (2.3) is established
and therefore the proof is completed.

We studied by the proof given by Martinl! that is
contradiction of Theorem 1 imply conditions of
Theorem 2. We have only to establish (2.3).
Proof: Without loss of geniality we assume that

U,.(p)cU,(p) (2.6)
Forallme Nandp € H.
SetV (p)=H (p) NH,(p)N ...... H(p) (2.7)

Forallme Nandp € H.
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The sequence {U (p)} and {Vn (p)} will satisfy
the conditions of (2.2), (2.3), and (2.4).
By (2.2) there exists m m > n with

U,(p)cV,(p) (2.8)
Similarly, there exists & > m such that

U,(p)=V,(p) (2.9)
Suppose V, (@) NV, (p) # ¢ (2.10)

By (2.3) which implies that
g€ U, (p)But(2.8) wehaveg € V, (p) from (2.4).

V(@) <U,(p) (2.11)
Combining (2.7), (2.8), and (2.10) we have V, (q)
C V_(p) which proves (2.3).

From (2.4), we have V (p) € U, (p) if a
neighborhood U(p) of p is given science from the
existence of n such that U (p) C U (p) and hence
V (p) C U (p). Thus, V (p) is neighborhood basis
at p., i.e. (2.2) is proved.
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