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ABSTRACT
The application of abstract results on contraction and extension in the Hilbert space through the concept 
of spectra in this paper, aims at an analytical survey of some deformation problems in elasticity theory. 
Results used in achieving this target were fully outlined in sections one and two while the target was 
realized in the last section.
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INTRODUCTION

In this work,[1] we make use of the normal, particularly self-adjoint and unitary operators in Hilbert space. 
However, since less is known of the structure of normal operators for a lack of satisfactory generalization, 
we, therefore, resort to finding relations that will reduce the problem of dealing with general linear 
operators to a more workable particular case of normal operators of which its simplest types are

T A iB= + ,

Where the bounded linear operator T  in the Hilbert space H  is represented by the two self-adjoint operators

A ReT T T B T
i
T T= = +( ) = − −( )1

2

1

2

* *
, ,Im

And

T VR=

Where the bounded linear isometric operator (which, in certain cases, can be chosen to be unitary, in 
particular if T  is a one-to-one operator of the space H  onto itself). The applicability of these relations 
is restricted by the fact that neither A  and B  nor V  and R  are in general permutable, and there is no 
simple relation among the corresponding representations of the iterated operators 2, ,T T …
In the sequel,[2] we shall deal with other relations which are connected with extensions of a given operator. 
But contrary to what we usually do, we shall also allow extensions which extend beyond the given space.
So by an extension of a linear operator T  of Hilbert space H , we shall understand a linear operator T  
in a Hilbert space H  which contains H  as a (not necessarily proper) subspace, such that D DTT ⊇  and 
Tf =Tf  for f DT∈ . We shall retain notation, T T⊃  which we used for ordinary extensions (where 
H = H ).
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The orthogonal projection of the extension space H  onto its subspace H  will be denoted by PH  or 
simply by P . Among the extensions of a bounded linear operator T  in H  (with DT = H ), we shall 
consider in particular those which are of the form PS  where S  is bounded linear transformation of an 
extension space H . We express this relation

T PS⊆

by saying that T  is the projection of the operator onto H , in symbols

T pr S= H  or simply T prS= � (1.1)

It is obvious that the relations T prS ii i= =( , )1 2  imply the relation

a T a T pr a S a S
1 1 2 2 1 1 2 2
+ = +( ) � (1.2)

(of course, S1  and S2  are operator in the same extension space H ). Relation (1) also implies that

T prS* * �= � (1.3)

Finally, the uniform, strong, or weak convergence of a sequence Sn{ }  implies convergence of the same 
type for the sequence Tn{ }  where T prSn n= . If H  and ′H  are two extension spaces of the same space 
H, ,S S ′  are bounded linear operator of H  and ′H , respectively, then we shall say that the structures 
H S, ,H{ }  and ′ ′{ }H S, ,H  are isomorphic if H  can be mapped isometrically onto ′H  in such a way 

that the elements of the common subspace H  are left invariant and that f f→ ′  implies Sf S f→ ′ ′ . If 
Sω

ω Ω{ } ∈
 and ′{ } ∈

Sω ω Ω  are two families of bounded linear transformations in H  and ′H ,  respectively, 
we define the isomorphism of the structures.
The terminology T  is the compression of S  in H , and S  is the dilation of T  to H  according to the 
proof by HALMOS.
In fact, we have[3]

T T g TT g PSPT g T PS Pg T PS g
0 0 0 0 0
, , , , ,

* * *( )( )( ) = ( ) = ( ) for T g
0
, ∈H

and

       T T S S T T T S S Tn m n m n m n m− − −( ) −( ) ,
0 0

 for T0 ∈H

and

T T T g S S T gn m n m−( )( ) = −( )( )0 0
, ,  for T g

0
, .∈H

( ). ,H Sω ω∈Ω
H  and ′ ′{ } ∈

H S, ,ω ω
H

Ω
 in the same manner by requiring that T T

0
→ *  imply S T S Tω ω0

→ ′ *  for 
all ω∈Ω .
It is obvious that, from the point of view of extensions of operators in H  which extend beyond H , two 
extensions which give rise to two isomorphic structures can be considered as identical. In the sequel, 
when speaking of Hilbert spaces, we shall mean both real and complex spaces. If we wish to distinguish 
between real and complex spaces, we shall say so explicitly. Of course, an extension space H  of H  is 
always of the same type (real or complex) as H .
Theorem 1.1:[4,5] A necessary and sufficient condition for the operator g  given in a set E  of the space 
C  to be extendable to the entire space C  so as to define there a linear operator of norm M≤  is that

   c GT M c Tkk

n
kk

n
01 01
≤

= =∑ ∑ � (1.4)

for every linear combination of remnants of E .
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Proof:
Consider the inequality (1.4), we start the proof as below by simplifying (1.4). Set M =1, this can be 
done without loss of generality. Continue by defining the functional G  for G*  which can be represented 
as linear combinations of elements of X . If

G c Tki

n
*
=

=∑ 01
,

Set GG c GTki

n
*

;
01=∑

We show that this definition is single valued, meaning that if

c T c Tki

n
ki

n
01 01= =∑ ∑= ′ ,  then c GT c GTki

n
k01 0=∑ ∑= ′

Taking differences, we have

′′ = ⇒ ′′ ′′ = − ′( )= =∑ ∑c T c GT c c cki

n
k k k ki

n
01 01
0

This follows immediately from the condition (1.1). Hence, we observe that these linear combinations of 
g*  form a linear manifold X '  and the operator g  extended to X ' , is obviously additive, homogeneous 
and from (1.1) is also bounded by M =1 having established the above we adjourn new elements for 
observations.
Denote by G

*( )1
 and G

*( )2
 two arbitrary elements of X '  and by GG

*( )1
 and GG

*( )2
 the corresponding 

values of the extension of G  to X ' . Let T0  be an element of the space C  which does not belong to X ' .

Since GG GG G G G G G G T G
*( ) * * * * * * *(1 2 1 2 1 2 1 0

− = −( ) ≤ − ≤ − +( ) ( ) ( ) ( ) ( ) ( )    

22 0)
−T 

Hence,

GG G T GG G
*( ) * * *( )1 1 0 1 1
− − ≤ +( ) ( )   

So if we vary g  in such a way that it runs through all elements of X ' , the quantities

GG T G
* *
− − 

0
 and GG T g

* *
+ − 

0

Form for fixed T0 , two classes of real numbers, the first of which lies to the left of the second, and 
consequently with one or more numbers included between the two classes. Set GT0  equal to one of these 
values, then for every element g  of X '

GG T G GT GG T G
* * * *
− − ≤ ≤ + −   

0 0 0

and replacing G*  by −G*  (since X '  is a linear manifold), we have

   GT GG T G
0 0
+ ≤ +

* *
� (1.5)

Extending the operator g  to linear combination of T0  and element g*  of X

G cT G cGT GT
0 0 0
+( ) = +

*

and we shall have

G cT G cT G
0 0
+( ) ≤ +

* *

Placing c = 0  makes the above to be nothing other than condition (1.1) and 0c ≠  in (1.1) and replacing 

G*  by 1
c
G
*
 still in same (1.2) gives
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g cT G cGT GG c GT G G
c

c T G
c0 0 0 0

−( ) = + = + ≤ +
* *

* *

Therefore, condition (1.4) is again fulfilled in the linear set X ''  formed by linear operator of T0  and 
elements G*  of X '  remaining additive, homogeneous and bounded consequent on the above, if for T0 , 
we choose a successive sequence of operators, 1 2

, , ,...,x x  say whose linear combinations and themselves 
or with elements of X '  are everywhere dense in C  in the sense of uniform convergence the operator G  
will be defined successively for this everywhere dense set without it being necessary to change the bound 
M =1. Immediately, we pass the limit to extend G  to the entire space, we discover that the following 
theorem has been proved.
This theorem also holds for the space of complex continuous operators. The necessity of condition (1.4) 
with complex coefficients ck , is evident; we shall show how the proof of the sufficiency can be reduced 
to the real case.
We first extend the operator G  to the linear set E  formed by complex linear combinations of elements 
of E,  just as was done in the real case. On E G,  will be homogeneous even with respect to a complex 
numerical factor, therefore, in particular, we shall have G ih iGh( ) =  for all elements H  of E . Denote 
by G h1  the real part of GH ;  inequality (4) holds for G1  in place of g,� if we consider only linear 
combinations of elements of E  with real coefficients ck . Then, we extend this real-valued functional 
G1  to the entire space Ccomplex , be real-valued, additive, homogenous with respect to real factors, and 
bounded by M .  We shall show that

BT GT iG iT
0 1 0 1 0
= − ( )

Furnishes the desired extension of the operator G.  To accomplish this it is necessary to show that the 
operator B  is additive, homogenous with respect to complex factors, bounded by M , and finally, 
that it coincides on X  with the operator G.  Additivity follows immediately from the additivity of 
G
1
.  A little more calculation is necessary to establish homogeneity with respect to complex factor 

c a ib= + :

B cT G aT biT iG aiT bT
0 1 0 0 1 0 0( ) = +( ) − −( )

	 = + ( ) − ( ) +aGT bG iT iaG iT ibGT
1 0 1 0 1 0 1 0

	 = +( ) − ( )( ) =a ib GT iG iT cBT
1 0 1 0 0

;

In this calculation, we have made use of the additivity of G1  and of its homogeneity with respect to real 
factors. To show that B  is bounded by M ,  we set

BT re rit
0

0= ≥( )

For arbitrary fixed T ;  then we shall have

BT e BT B e T G e T M e T M Tit it it it
0 0 0 1 0 0 0
= = ( ) = ( ) ≤ =− − − −

   

the third equation is motivated by the fact that B e Tit( )
−

0
, being equal to r , is real-valued. Finally, to 

show that BH GH=  for every H  of X , we note that −G ig
1
( )  is by definition equal to the real part of 

− ( ) = −G ig iAg,  hence equal to the imaginary part of GH  and that consequently

iGH G H iG iH= − ( )( )1 1

Which completes the proof.
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Generalized spectral families and the NEUMARK’S theorem

In extensions which extend beyond the given space M.A NEUMARK; he centers on self-adjoint 
extensions of symmetric operators in particular and consequently, if S  is a symmetric operator in the 
complex Hilbert space H  (with Ds  dense in H ), we know that S  cannot be extended to a self-adjoint 
operator without extending beyond H  except when the deficiency indices m  and n  of S  are equal. On 
the other hand, there always exists self-adjoint extensions of S  if one allows these extensions to extend 
beyond the space H .
This is easily proved: Choose, in a Hilbert space H' , a symmetric operator S '  but in reverse order. One 
can take, for example, H H' =  and S S' = − . Having done this, we consider the product space H = ×H H'  
whose elements are pairs T T T T, ,

' '{ } ∈ ∈( )H H  and in which the vector operations and metrics are 
defined as follows:

c T T cT cT TT T T T T T T, , ; , , ;
' ' ' ' ' '{ } = { } { }+{ } = + +{ }1 1 2 2 1 2 1 2

T T T T T T T T
1 1 2 2 1 2 1 2
, , , , ,

' ' ' '{ } { }( ) = ( ) + ( ) .

If we identify the element T  in H  with the element T ,0{ }  in H , we embed H  in H  as a subspace of 
the latter. The operator

S T T ST S T T D T Ds s, , ,
' ' ' '{ } = { } ∈ ∈( )

is then, as can easily be seen, a symmetric operator in H  having deficiency indices m n n m+ +, .  
Consequently, S  can be extended, without extending beyond H , to a self-adjoint operator A  in H. 
Since we have

S S A⊂ ⊂

(where the first extension is obtained by extension from H  to H ), we obtain a self-adjoint extension A  of S .
Let,[4]

A dEλ λ−∞

∞

∫
be the spectral decomposition of A . We have the relations

ST g AT Pg d E T Pg d PE T g, , , , ,�( ) = ( ) = ( ) = ( )
−∞

∞

−∞

∞

∫ ∫λ λλ λ

ST AT d E T T d PE T T2 2 2 2= = ( ) = ( )
∞

∞

∞

∞

∫ ∫λ λλ λ, , .
− −

For T D gs∈ ∈, .H  Setting

B prEλ λ= � (1.2.1)

We obtain a family Bλ λ{ }−∞< <∞
 of bounded self-adjoint operators in the space H , which have the 

following properties:
a.	 B Bλ µ  for λ µ< ;
b.	 B Bλ λ+ =

0
;

c.	 Bλ → 0  as λ λ→ −∞ →;� �B I  as λ → +∞.
Every one-parameter family of the bounded self-adjoint operator has these properties will be called a 
generalized spectral family. If this family consists of projections (which are then, as a consequence of a), 
mutually permutable, then we have an ordinary spectral family.
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According to what we just proved, we can assign to each symmetric operator S  in H  a generalized 
spectral family Bλ{ }  in such a way that the equations

ST g d B T g ST d B T T, , , ,( ) = ( ) = ( )
∞

∞

∞

∞

∫ ∫λ λλ λ 

2 2

− −
� (1.2.2)

Are satisfied for T D gs∈ ∈,� � H  (where the integral in the second equation can also converge for certain 
T  which do not belong to Ds ).
Theorem 1.2.1:[6] Every generalized spectral family Bλ{ }  can be represented in the form (4), as the 
projection of an ordinary spectral family Eλ{ }.  One can even require the extension space H  to be 
minimal in the sense that it be spanned by the elements of the form E Tλ  where T ∈ − < < ∞H, ;∞ λ  in 
this case, the structure H E, ,λ λ

H{ }−∞< <∞
 is determined to within an isomorphism. We shall prove this 

theorem later as a corollary to the principal theorem.
Proof of 1.2 (NEUMARK’S)
Let Bλ λ{ }−∞< <∞

 be a generalized spectral family in H . Set B B I∞ →∞= =limλ λ  and B B−∞ →∞= =lim .λ λ 0  
We assign the operator

B B Bb a∆ = −

To each half-open interval

∆ = ( ] −∞ < ∞a b a b, (where  

and the operator

;
ii

B B∆=∑ω

to each set ω which consists of a finite number of disjoint intervals ;i∆  this definition obviously does 
not depend on the particular choice of the decomposition of ω. For Ω = −∞ ∞( ],  we have B IΩ = , and 
for the void set Θ  we have BΘ = 0 . The family K  of these sets ω,  including Ω  and Θ , is clearly 
closed with respect to subtraction of any two sets and with respect to the operation of forming unions 
and intersections of a finite number of sets. Bω  is a positive additive set function defined on K ; more 
precisely, Bω  is for all ω∈K , a self-adjoint operator such that

1 2 1 12 1 20 , 0, , , whereB I B B I B B BΩ ∪= = = + =Θ ω ω ω ω Θ  

We shall also consider K  as a *-semi-group; we do this by setting

ωω ω ω ω ω
1 2 1 2

= = = , ,
*

µ Ω

We shall see that Bω , considered as a function defined on this *-semi-group, satisfies the conditions of 
the principal theorem.
Condition (a) is satisfied in an obvious manner, condition (b) means that

s B g g
i j j iji

= ( )∑∑ ω ω ,  0

For arbitrary ω ω
1
, ,… ∈n K  and g gn1

, ,… ∈H . To prove this inequality, we first consider the intersections

π ω ω ω= ± ± … ± ∈( )1 2
   n K

Where each time we can choose one of the signs +  or – in an arbitrary manner; ω+  denotes the set ω  
itself and ω−  its complement Ω −ω . Two intersections ≠  corresponding to different variations of the 
sign are obviously disjoint. Each set ω ωi j i j � <( )  is the union of certain of these ≠ , namely, of all those 
obtained by choosing the sign +  for i  and j , that is, of all those which are contained in ω ωi j .  In 
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virtue of the additivity of Bω  as a set operator, the sum s  then decomposes into a sum of terms of the 
form

B g gj iπ ,( )
We combine the terms corresponding to the same ≠  into a partial sum s≠ ;  the latter extends to all 
the pairs of indices i j,( )  for which ω ω πi j ⊃ , that is for which ω π ω πi j⊇ ⊃and  simultaneously. 
Suppose i i ir1 2

, ,...,  are those values of the index i  for which ωi  contains the fixed set ;π  we then have

s B g g B g g g gi ik

r

h

r
ih

r

k h hπ π π= ( ) = ( ) =
== =∑∑ ∑, , ,
11 1

with

and consequently, 0.sπ   Since this is true for all the ,π  it follows that s s=∑ ππ
 0,  which was to 

be proved.
Let us now pass on to condition (c). Suppose ω  is a fixed element in K  and set

ω ω ω ω ω ωi i i i i n'
, , , ,= = = …( )+ −

 

''
1 2

Applying the inequality s 0 , which we have just proved, to ωi
'  and ωi

''  instead of to ωi , we obtain

s B g g s B g gi j j i i j j i
i j i j

' ''
' ' " ", , , .= ( ) = ( )∑ ∑ ∑ ∑ω ω ω ω 

 0 0

Since ω ωi j
' '
  and ω ωi j

'' ''
  are to be contained in the disjoint sets ω ω+ −, ,  they are also disjoint; since 

their union is equal to ω ωi j , it follows from the additivity of Bω  that s s s' ''+ = . Consequently, we 
have 0 s s' , that is

0 i j j i i j j iB g g B g g
i j i j∑ ∑ ∑ ∑( ) ( )ω ω ω ω ω ω   

, , ,

and hence condition (c) is satisfied with Cω =1.
We[7] can then apply the principal theorem of section 1.4.2. Hence, there exists a representation Eω{ }  of 
the *-semi-group K  on a minimal extension space H  such that

B prEω ω= ;�

here, “minimal” means that the space H  is spanned by the elements of the form E fω  where f K∈ ∈H, .ω  
It follows from the structure of K  as a *-semi-group that Eω  is a projection, E IΩ = ,  and

E E Eω ω ω ω1 2 1 2

= � (1.2.3)

We also have

E E Eω ω ω ω ω ω
1 2 1 2 1 2∪ ∩= + =, ;when Θ � (1.2.4)

This follows, virtue of the fact that H  is minimal, from the fact that, Bω  being an additive operator of 
ω,  we have

B B Bω ω ω ω ω ω ω
1 2 1 2∪ ∩ ∩ ∩( ) = +

for all ω∈K . In particular, we have E E E EΘ Θ Θ Θ Θ= = +


, and hence EΘ = 0 .
We set

E Eλ λ= −∞( ],  for −∞ < < ∞λ ;

Since B B B B−∞( ] −∞= − =, ,λ λ λ  we then have
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B prEλ λ= , � (1.2.5)

And by (27) or (28),

E Eλ µ λ µ for <

We finally arrive at the relations

E Eλ µ λ µ→ → +as 0;

E Eλ λ→ = → −∞Θ 0 as ;

E E Iλ λ→ = →∞Ω as ;

Which are consequences, in virtue of the fact that H  is minimal, of the relations

B B−∞( ] −∞( ]→ → +
, ,

,λ ω µ ω λ µ
 

as 0

B B−∞( ] → = → −∞
,

,λ ω ω λ




0 Θ as

B B B−∞( ] → = → +∞
,λ ω ω ω λ


Ω as

Which are valid for all fixed ω .
Hence, Eω{ }  is an ordinary spectral family. Since each of the Eω  is derived from the Eλ  by forming 
differences and sums or passing to the limit λ → ±∞( ) ,  the space H  is also minimal with respect to 

Eλ{ } , and the structure H E, ,λ H{ }  is determined to within an isomorphism. This completes the proof 
of theorem 1.2.1.
We observe that[8] if H  is minimal, every interval of the constancy of Bλ  is also an interval of constancy 
for Eλ . In fact, if a bλ <  is an interval of the constancy of Bλ ,  we have

   E E E T E E T E Ea a aλ µ λ µ µ λ µ−( ) = −( ) = −{ } { } { }0

2

0

2

min , min , min , min ,µµ{ }( )( )T T
0 0
,

= −( )( ) = −( )({ } { } { } { }P E E T T B B T Ta amin , min , min , min ,
, ,λ µ µ λ µ µ0 0 0 0 )) = 0

for T a b
0
∈ <H, λ , and ∝  an arbitrary real number; hence

E E gaλ −( ) = 0

for every element g  of the form E T Tµ 0 0 ∈( )H . Since these elements g  span the space H , we have 
E E E Ea aλ λ− = =0, , which completes the proof of the theorem. The simplest case of the Neumark 
theorem occurs when the family Bλ{ }  is generated by a self-adjoint operator A  such that 0 A I , in 
the following manner:

Bλ = 0  for λ λ< =a B A,� �  for a b B Iλ λ< =,�  for λ b .

We thus obtain the following corollary.
Corollary 1.2.2:[9] Every self-adjoint transformation A  in the Hilbert space H , such that 0 A I , can 
be represented in the form
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A prQ=

where Q  is a projection in an extension space H . In brief: A  is the projection of a projection.
This corollary can also be proved directly without recourse to the general Neumark theorem. The 
following construction is due to E.A. Michael.
Consider the product space H = ×H H;  by identifying the element T  in H  with the element T ,0{ }  in 
H , we embed H  in H  as a subspace of the latter. If we write the elements H  as one-column matrices 
T
g








 , then every bounded linear operator T  in H  can be represented in the form of a matrix

T
T T
T T

=










11 12

21 22

� (1.2.6)

Whose elements Tik � bounded linear operator in H . It is easily verified that the matrix addition and 
multiplication of the corresponding matrices correspond to the addition and multiplication of the 
operators. Moreover, relation (6) implies that

T
T T
T T

* =








11 12

21 22

* *

* *

Finally, we have

T = prT

If and only if

T Tn =

This done, we consider the operator

Q
A B
B I A

=
−









  with B A I A= −( ) 

1

2

It is clear that Q  is self-adjoint and that A prQ= . It remains only to show that Q Q2 = , which is 
easily done by calculating the square of the matrix Q . The following theorem is another, less special, 
consequence of the Neumark theorem.
Theorem 1.2.3:[10] Every finite or infinite sequence An{ }  of bounded self-adjoint operators in the Hilbert 
space H  such that

A An n 0 1,∑ =

can be represented in the form

A prQ nn n= = …( )1 2, , ,

Where Qn{ }  is sequence of projections of an extension space H  for which

Q Q m n Q In m n= ≠( ) =∑0 ,

In fact, one has only to apply the Neumark theorem to the generalized spectral family Bλ{ }  defined by

B Annλ λ
=∑ 

If Eλ{ }  is an ordinary spectral family in a minimal extension space such that B prEλ λ= , the function 
Eλ  of λ  increases only at the points n  where it has jumps
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Q E En n n= − −0;

these operators Qn  satisfy the requirements of the theorem. This theorem, in its turn, has the following 
theorem as a consequence.
Theorem 1.2.4:[11] Every finite or infinite sequence Tn{ }  of bounded linear operators in the complex 
Hilbert space H  can be represented by means of a sequence Nn{ }  of bounded normal operators in an 
extension space H  in the form

T prN nn n= = …( )1 2, , ,

Where the Nn �  is pairwise doubly permutable. If any of the operator Tn  is self-adjoint, the corresponding 
Nn  can also be chosen to be self-adjoint. We first consider the case where all the operators Tn  are self-
adjoint. If mn  and Mn  are the greatest lower and least upper bounds of Tn , we set

A
M m

T m I nn n
n n

n n=
− +( )

−( ) = …( )1

2 1
1 2, , ;

Then, we obviously have

0,n nn
A A I≤ ≤∑
If we again set

A I Ann
= −∑

we obtain a sequence A A A, , ,...,
1 2  of operators which satisfies the hypotheses of the preceding theorem 

and which consequently can be represented in the form

A prQ nn n= = …( , , )1 2

In terms of the projections Qn , which are pairwise orthogonal (and consequently permutable). It follows 
that

T prS nn n= = …( , , )1 2

with

S m I M m Qn n
n

n n n= + − +( )2 1 ,

where the operators Sn  are self-adjoint and mutually permutable. The general case is reducible to the 
particular case of self-adjoint operators by replacing each operator Tn  in the given sequence by the two 
self-adjoint operators ReTn  and ImTn . In fact, since the representation

Re ImT = prS T prS nn n n n2 2 1
1 2, ( , , )= = …+

is possible by means of bounded self-adjoint pairwise permutable operators S
1
,  the representation

T prN nn n= = …( , , )1 2

follows from this by means of the normal pairwise doubly permutable operators N S iSn n n= + +2 2 1
. For a 

self-adjoint Tn , we have T Tn n= Re , and we can then choose S n2 1
0+ =  and hence N Sn n= 2 .

Sequences of moments

1.	 The following theorem is closely related to the theorem on extension
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Theorem 1.3.1:[12] Suppose A nn{ } = …( , , )0 1  is a sequence of bounded self-adjoint operators in the 
Hilbert space H  satisfying the following conditions

( )a
for every polynomial a a a a

with real coefficienM

n
n

0 1 2

2+ + +…+λ λ λ
tts whichassumes non negativevalues in theinterval

M M wehav
−

− � �λ , ee a A a A a A a An n0 0 1 1 2 2
0+ + +…+







 �

A I
0
= . � (1.3.1)

Then, there exists a self-adjoint operator A  in an extension space H  such that

A prA nn
n= = …( , , , )0 1 � (1.3.2)

The proof of this theorem is based on the concept of the principal theorem, as in subsection 1.4.2 below.
Suppose Γ  is the *-semi-group of non-negative integers n  with addition as the “semi-group operation” 
and with the identity operation n n* =  as the “*-opeartion;” then the “unit” element is the number 0.
Every representation of Γ  is obviously of the form An{ }  where A  is a bounded self-adjoint operator.
We shall show that the sequence A nn{ } = …( )0 1, , ,  visualized in theorem 3.2, considered as a function of 
the variable element n  in the *-semi-group Γ, satisfies the conditions of the principal theorem. Condition 
(a) is obviously satisfied; as for the other two conditions, one proves them using the integral formula

A dBn
n

M o

M
=

− −∫ λ λ

established in sec. 3, where Bλ{ }  is a generalized spectral family on the interval −[ ]M M, . In fact, if 
g nn{ } = …( , , )0 1  is any sequence of elements in H , which are almost all equal to 0, we have

A g g d B g gi k k iki
i k

k iM

M

ki+=

∞

=

∞ +

− −=

∞

=

∞( ) = ( )∑∑ ∫∑∑, ,
00 000

λ λ

= ( ) ( ) ( )( )
− −∫ B d g g
M

M
λ λ λ,  0

0

Where we have set

g gi ii
λ λ( ) = =

∞∑ 0

and where B ∆( )  denotes the positive, additive interval function generated by Bλ , that is B B Bb a∆( ) = −  
for ∆ = ( ]a b, . Furthermore, for r = …0 1, , ,  we have that

A g g B d g gi r k kk
r

M

M

i + +=

∞

− −=

∞ ( ) = ( ) ( ) ( )( )∑ ∫∑ 20

2

00
, ( ,λ λ λ λ

M B d g g M A g gr r

M i k k iki

M
2 2

0 00
λ λ λ( ) ( ) ( )( ) = ( )

− − +=

∞

=

∞

∫ ∑∑, , .

Thus, we see that conditions (b) and (c) are also satisfied, and one can then apply the principal theorem.
Furthermore, one can require that H  be minimal in the sense that it be spanned by elements of the 
form A Tn  where T ∈H  and n = …0 1, , ;  in this case, this structure H A, ,H{ }  is determined to within an 
isomorphism, and we have

A M

We observe that if Bλ{ }  is a generalized spectral family on the interval −[ ]M M,  (that is, Bλ = 0  for 
λ < −M  and B Iλ =  for λM ), the operators



Emmanuel and Akabuike: Hilbert space operator deformation analysis

AJMS/Oct-Dec-2019/Vol 3/Issue 4� 63

A dB nn
n

M

M
= = …

− −∫ λ λ ( , , )0 1
0

� (1.3.3)

satisfy conditions aM( )  and β( ) . Conversely, if these conditions are satisfied, the sequence An{ }  has an 
integral decomposition of the form (8) with Bλ{ }  on −[ ]M M, . This clearly follows from theorem 3.4 if 
we make use of the directly, in fact, the correspondence between the polynomials

p a a a an
nλ λ λ λ( ) = + + +…+

0 1 2

2

and the self-adjoint operators

A p a I a A a A a An n( ) = + + +
0 1 1 2 2

which is homogenous, additive and of positive type with respect to the interval −M M λ ,  can be 
extended, with preservation of these properties, to a vaster class of functions which comprises among 
others, the discontinuous functions

e
for
forµ λ

λ µ
λ µ

( ) =
>





1

0



and then we obtain representation (8) by setting

B A eµ µ= ( ).
We[13] have only to repeat verbatim the line of the argument of one of the usual proofs of the spectral 
decomposition of a bounded self-adjoint operator A , letting An  play the role of An . The only difference 
is that now the difference is that now the correspondence p p A( )λ → ( )  and its extension are no longer 
multiplicative and that consequently the relation e eµ µλ λ2 ( ) ≡ ( )  does not imply that 2Bµ  is equal to Bµ  
and hence that Bµ  is in general not a projection.
According to theorem 3.1, Bλ{ }  is the projection of an ordinary spectral family Eλ{ } , which one can 
choose in such a way that it is also on −[ ]M M, , and then (7) follows from (8) by setting

A dE
M

M
=

− −∫ λ λ0

We shall return to this theorem later and prove it as a corollary to the principal theorem.
2.	 If we replace condition β( )  by less restrictive condition

A I
0
 , � (1.3.4)

Then representation (7) of the sequence An{ }  will still be possible, if only starting from n =1, everything 
reduces to showing that if the sequence

A A A
0 1 2
, , ,…{ }

Satisfies conditions aM( )  and ′( )β , the sequence

I A A, , , ,
1 2

…{ }
Satisfies condition aM( ) . However, if p a a an

nλ λ λ( ) = + +…+
0 1

0  in −[ ]M M, , we have in particular 
that p a0 0

0( ) =  ;  since by assumption, a A a A a An n0 0 1 1
0+ +…+   and I A−  0 , it follows that

a I a A a A a I A a A a A a An n n n0 1 1 0 0 0 0 1 1
0+ +…+ = −( ) + + +…+ 

One of the most interesting consequences of the representation

A prA nn
n= = …( , , )1 2
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Is the following. We have

A T T PA T T A T T AT
2 0

2

0

2

0

2

, , ,( ) = ( ) = ( ) =

 PAT APAT T PAPAT T A T T
0

2

0 0 0 0 1

2

0 0
= ( ) = ( ) =, , ( , )

for all T ∈H , where equality holds if and only if

AT PAT AT= =
0 1 0

.

If this case occurs for all T ∈H , we have

A T A AT A AT A AT A T2

0 0 1 0 1 1 0 1

2

0
= ( ) = ( ) = ( ) = ,

A T A A T A A T A A T A To
3

0

2

0 1

2

0 1 1

2

1

3

0
= ( ) = ( ) = ( ) = ,  etc.

And hence

A T PA T A T nn
n n

0 0 1 0
1 2= = = …( , , , )

We have thus obtained the following result.
If the sequence A A A

0 1 2
, , ,...  of bounded self-adjoint operators in the Hilbert space H  satisfies hypotheses 

aM( )  and β '( ) , then the inequality

A A
1

2

2
 � (1.3.5)

holds, where equality occurs if and only if A A nn
n= = …( )1

1 2, , .  Inequality (9) is due to R.V Kadison 
who proved it differently and used it in his researches on algebraic invariants of operator algebras. 
Moreover, one can also omit hypotheses β '( ) , and then the following inequality

A A A
1

2

0 2
 � (1.3.6)

Is obtained; in fact, we have only to apply inequality (9) to the sequence A An0

1−{ } .

Normal extensions

We[14] proved previously in particular that every bounded linear operator T  in the complex Hilbert space 
H  can be represented as the projection of a normal operator in an extension space. The question arises: 
Does T  even have a normal extension N ?
If a normal extension N  of T  exists, then a fortiori T pr N= � , and consequently T prN* = , from which 
it follows that

TT NT N T PN T TT
0 0 0 0 0
= = =* *

for all T ∈H . The inequality

*
0 0  TT T T  (for all T0 ∈H )� (1.4.1)

is, therefore, a necessary condition that T  has a normal extension. However, it is easy to construct 
examples of operator T  which does not satisfy this condition.
Other less simple necessary conditions are obtained in the following manner. Suppose g ii{ } = …( , , )0 1  
is a sequence of elements in H  almost all of which (that is with perhaps the exception of a finite number 
of them) are equal to the element 0 in H . We then have
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T g T g N g N g N N g gi
j

j
iji

i
j

j
iji

j i
j iji

, ( , )
*( ) = = ( )=

∞

=

∞ ∑∑ ∑∑ ∑∑00

	 = ( ) = ( ) =∑∑ ∑∑ ∑N N g g N g N g N gi j
j iji

j
j

i
iji

i
ii

* * * *
, ,

2
0

( ) ( )
21 21 1 * * *2

,
ii j

j i i ii o j o i i
T g T g N g N N g

+∞ ∞ + +
= =

=∑ ∑ ∑ ∑

from which we see that

( , )T g T gi
j

j
iji
 0

00 =

∞

=

∞ ∑∑ � (1.3.8)

and

T g T g C T g T gi
j

j
iji

i
j

j
iji

+ +
=

∞

=

∞

=

∞

=

∞( ) ( )∑∑ ∑∑1 1 2

00 00
, , , � (1.3.9)

with constant C > 0 . These two inequalities are therefore necessary conditions that T  has bounded 
normal extension. However, these conditions are also sufficient. Namely, the following theorem holds.
Theorem 1.4.1:[15] Every bounded linear operator in the Hilbert space H  which satisfies conditions (16) 
and (17) has a bounded normal extension N  in an extension space H . One can even require that H  be 
minimal in the sense that it is spanned by the elements of the form N Tk*

0
 where T0 ∈H  and k = …0 1, , ;  

in this case, the structure H N, ,H{ }  is determined to within an isomorphism.
For the present, we shall concern ourselves with a remark connecting the problems on extensions.

Principal theorem
The following three propositions[15] are equivalent for any two bounded linear operators, T  in H  and T0  
in H ⊇( )H :
a)	 T T⊂ 0 ;
b)	 T = prT  and T T = prT T*

0
*
0

c)	 T T = ptT T*i
0
k *i

0
k  for i k, , ,= …0 1

Proof: a) → c) because

T T T g T T T g T g,T g = T T T ,g = PT T Tk k i k
0
i *i

0
k
0 0

*i
0
k
0

*
, ,

0 0 0 0( ) = ( ) = ( ) ( ) ,,g( )
For T g, .∈H  c) →b) is obvious. b) →a) is proved as follows: For T ' ∈H  we have on the other that

TT = T TT ,T = PT TT ,T = TT ,TT = TT* *
0

2

0 0 0 0 0 0 0

2( ) ( ) ( )

because

T T = prT T* * ,

and, on the other hand, that

TT = PTT0 0

because

T = prT

Hence, we have

PTT = TT0 0
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Which is possible if and only if TT = PTT0 0 , that is, if TT =TT ;0 0  therefore, T T0⊇
Let us first introduce some concepts of an algebraic nature. By a semi-group we shall understand a 
system Γ  of elements (which we shall denote by Greek letters) in which two operations are defined: 
An associative “semi-group operation” ( , )ξ η ξη→  and a “* operation,” ξ ξ→ * , which satisfies the 
following rules of computation:

ξ ξ ξ ξ** * * *
,= ( ) =r ri i

We shall assume further that there is a unit element ε  in Γ  such that

εξ ξε ξ= =  for all ξ ∈Γ,  and ε ε* = .

Any group can be considered as a semi-group if we define the *operation in it as the inverse: ξ ξ* = −1 . 
In the sequel, when we speak of a group Γ , we shall assume that it is provided with this *-semi-group 
structure. By a representation of the *-semi-group Γ  in a Hilbert space, H  we shall understand a family 

Dξ ξ
{ }

∈Γ
 of bounded linear operators in H  such that element whose images under the operators Uξ  span 

the space H ; under these conditions, the structure H, ,U fξ 0{ }  is determined to within an isomorphism.
Proof of Theorem 1.4.1[16] (On Normal Extensions) Using the idea of the Principal Theorem
Now let Γ  be the following *-semi-group: Its elements are the ordered pairs π ={ }i j,  of non-negative 
integers; the semi-group operation is defined in it by

π π+ ={ }+{ } = + +{ }' ' ' ' '
, , ,i j i j i i j j

and the * operation by

π * *
, , ;={ } = { }i j j i

then the “unit” element is

ε = { }0 0,

Let Dπ{ }  be a representation of Γ . Since the semi-group operation in Γ  is commutative, the operator 
Dπ  is normal and pairwise doubly permutable. If we set η ={ , }0 1 , every π ={ , }i j  can be written in the 
form

π η η= +i j*
,

and consequently, we have

D N Ni j
π =

*

where

N D= η �

Let T  be a bounded linear operator in the space H  which satisfies the conditions of theorem 2.3 on 
contraction

T g T gi
j

j
iji

,( )=

∞

=

∞ ∑∑  0
00

� (1.3.10)

T g T g C T g T g Ci
j

j
iji

i
j

j
iji

+ +
=

∞

=

∞

=

∞

=

∞( ) ( ) >∑∑ ∑∑1 1 2

00 00
0, , ( ) � (1.3.11)
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We[17] shall show that the operator

T T Ti j
i j

{ , }

*=

Considered as an operator defined on the *-semi-group Γ , satisfies the conditions of the principal 
theorem.
It is, first of all, obvious that T I T Tε π π= =, *

*. To prove that Tπ  is a function of positive type, we choose 
any family gπ{ }  of elements in H , almost all of which are equal to 0, and consider the sum

s T g g= ( )+∑∑ π π π πππ * ' '' ,

where π ={ }i j,  and π ' ' '
,={ }i j  run through the elements of Γ . It is easy to see that

s T T g g T h T h
i j i j i

i
i
iii

= ( )





 = ( )+ +∑ ∑∑∑ *

'
'

'' '

'

', ,
π πππ

where

h T g
j

j
i j=∑ { },

in virtue of (1.3.10), it follows from this that s 0  and therefore Tπ  is a function of positive type.
Repeating inequality (1.3.11) i j0 0+( )  times we obtain, in an analogous manner, that for fixed 
π 0 0 0= +{ }i j , we have

T g g T h T hi j i
i

i j i
ijiπ π π π π πππ * * ' '' '

' '

', ,
+ + +

+ + + +( ) = ( )∑∑ ∑∑
0 0

0 0 0 0

C T h T h C T g gi j i
i

i
i

i j
ii

o2 20 0 0+( ) +( )
+( ) = ( )∑∑∑∑ '

'

* ' ''' , , .
π π π πππ

Conditions (a)-(c) of the principal theorem are therefore satisfied and then applying this theorem, it 
follows that in an extension space H , there exists a bounded normal operator N  (with N C ) such 
that

T T prN N i ji i i j* *
( , , , )= = …0 1 ,

which is equivalent to T N⊆ . If H  is minimal in the sense that it is spanned by the elements 
N N T Ti j*

,∈( )H  it is also spanned by the elements N Ti* , in as much as N Ti ∈H  for T ∈H . This 
completes the proof of theorem 1.4.1.
Proof of the Extension space of Theorem 1.4.2:[18] We denote the set of all the families v v= { }

∈ξ ξ Γ
 of 

elements vξ  in H  by V v;  can be considered also as a vector whose component with index ξ  is vξ  in 
symbols:

v v( ) =
ξ ξ

The addition of these vectors and their multiplication by scalars (that is, by real or complex numbers 
according to as H  is real or complex) are defined by the corresponding operations on components.
In V  we shall consider in particular two linear manifolds, G  and F . G  consists of vectors almost all 
of whose components are equal to 0; these vectors will be denoted by the letter g . F  consists of vectors 
T Ti={ }  for which there exists a vector g gi={ }  such that

T T g
nξ ξ η η=∑ *

for all ξ ∈Γ;  this relationship between T  and g  will denoted by

ˆ=T g
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We define a binary form [ , ]T T  in F  in the following way. If ' ',ˆ ˆ= =T g T g
we let

T T T g T g g, , ,
' '

*
  = ( ) = ( )∑ ∑∑ξ ξξ ξ η η ξηξ

� (1.3.12)

= ( ) = ( )∑∑ ∑g T g g Tη η ξ ξηξ η ηη
, ,*

' ' � (1.3.13)

(Here we have made use of the fact that T T T
ξ η ξ η η ξ*

*
* *

*
)= =

( )
. It follows from (1.3.12) that this definition 

does not depend on the particular choice of g  in the representation of T , and it follows from (1.3.13) 
that it does not depend on the particular choice of g '  either; consequently, the form T T, '   is determined 
uniquely by T  and T ' . It is obviously linear in T  and we have T T T T' '

, , .  =    It follows from condition 
(b) that

T T T g g, ,*[ ] = ( )∑∑ ξ η η ξηξ
 0 .

We still have to prove that the equality sign holds here only for T = 0 . But it follows from what has 
already been proved that the Schwarz inequality is valid for the form T T, :

' 

T T T T T T, [ , ][ , ]
' ' ' 
2



The equation T T,[ ] = 0  for one T therefore implies that T T, '  − 0  for all T F'
;∈

T T T T T T, [ , ][ , ]
' ' 
2



The equation T T,[ ] = 0  for one f  therefore implies that T T, '  = 0  for all T F∈ ;  but it follows easily 
from (18) that this is possible only if T = 0 . Hence, the form [ , ]

'T T  possesses all the properties of a 
scalar product; therefore, if the scalar product in F  is defined by

T T T T, [ , ]
' '( ) = ,

F  becomes a Hilbert space, which in general is not complete. Let H  be the completion of F . The 
original space H  can be embedded as a subspace in H , and even in F ; this can be done by identifying 
the element T  in H  with the element

T T TT ={ }ξ*

in F  (note that ˆTT g=  with g T( ) =
ξ

 and g( ) =
ξ

0  for ξ ε≠ ). This identification is justified because 
we clearly have

T cT T T T T T T TcT T T T T T T T
= = + ( ) = ( )+

, , , ,' ' '

'

Let us now calculate the orthogonal projection PT  of an element T F∈  onto subspace H ! We should 
have for all h∈H ,

PT h T h, ( , )( ) = ,

the definition of the scalar product in F  yields

PT h T T T hh, , , ;( ) = ( ) = ( )( )ε
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since Pf  and T( )ε � are in H , this equation is possible for all h∈H  only if

PT T= ( ) ,� (1.3.14)

3.	 The representation Dξ{ } . Suppose ,ˆ=T g  that is,

T T gξ ξ η ηη
=∑ *

We then have

T T g T g
a a

a
* * *ξ η ξ η η ξ ξ ξ ξ= Σ Σ

For arbitrary a∈Γ,  where

g ga
aξ η η=∑

� (1.3.15)

(if there are no η  such that aη ξ= , then the sum in the second member of (1.3.15) is defined to be equal 
to 0). It is clear that, for given a ga, ξ = 0  for almost all the ξ , and therefore

g G T Fa
aξ ξ{ }∈ { }∈, *

Consequently,

D T Ta aξ ξ{ } = { }*

is a operator, which is obviously linear of F  into F . We have

D T T Tξ ξ ε ξ ξ{ } = { } = { }* � (1.3.16)

D D T D T T T D Ta a a a aβ ξ β ξ β ξ β ξ β ξ{ } = { } = { } = { } = { }( )* * * * � (1.3.17)

and for ' ',ˆ ˆ= =T g T g ,

D T T T g T g ga a a
, , ,

' ' '
* *( ) = ( ) = ( )∑ ∑∑ξ ξξ ξ η η ξηξ

= ( ) = ( ) = ( )∑∑ ∑g T g g T T D T
a a aη η ξ ξηξ η ηη

, , ,* * *

' ' ' � (1.3.18)

Finally, it follows from (1.3.18), (1.3.17), and condition (c) of the principal theorem that

D T D T D D T T D T T T g ga a a a a a a a
, , , ,* * * *( ) = ( ) = ( ) = ( )∑∑ ξ η η ξηξ

C T g g C T Ta a
2 2

ξ η η ξηξ * , ( , )( ) =∑∑
Hence, Da  is a bounded linear operator in F D Ca a,� ,  and consequently, it can be extended by a 
continuity to H . It follows from (1.3.17) to (1.3.18) that Dξ{ }  thus extended will be a representation of 
Γ  in H .
Consider in particular an element T  which belongs to H, .T T=  We then have

D T D T T T Ta a a
= { } = { }ξ ξ* * � (1.3.19)
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and hence by (1.3.14)

PD T D T T Ta a a= ( ) =
ε

This proves that

T prDa a=

It also follows from (1.3.19) that, for ˆ= ∈T g F

T T g D g D g( ) = = ( ) = ( )∑ ∑∑ξ ξ η ηη η η ξ η ηη ξη* ,

whence,

T D g=∑ η ηη

This means that F  consists of finite sums of elements of the form D gη  where g∈ ∈H, ;η Γ  then these 
elements span the space, H  and therefore, the extension space H  is minimal. The representation Dξ{ }  
of Γ  which we have just constructed also satisfies proposition 2 and 3 of the principal theorem. This 
follows from the equation

D T T T g ga a
, ,

' '
*( ) = ( )∑∑ ξ η η ξηξ

(See [1.3.8]), valid for arbitrary ( )' 'ˆ ˆ,= = ∈T g f g F , and from the obvious fact that if the relation

D T T D T T D T Ta , , , ,
' ' '( ) = ( ) + ( )β γ

or the relation

D T T D T T na an
, , ( )

' '( ) → ( ) →∞

is satisfied for T T F, '∈  and if, moreover, in the second case

lim  Dan < ∞

the same relation is satisfied for all the elements T T, '  in H
4.	 Isomorphism
It remains to investigate the problem: To what extent is the structure H D, ,ξ H{ }  determined? To this 
end, let us consider any two representations of Γ, 'Dξ{ }  in H '  and Dξ

''{ }  in H ", where H '  and H " are 
two extension spaces of H , and let us assume that

prD T prD Tξ ξ ξ ξ
' ''

,= =

Furthermore,[19] we shall assume that each of these extension spaces is minimal, i.e., that H '  is spanned 
by the elements D gξ

'  and H ''  by the elements of D gξ
'' , where g∈H  and ξ ∈Γ .

Let

T D g T D g
1 1 2 2

' ' ' '
,= =∑ ∑ξ ξξ ξ ξξ

be two elements in H '  (with g g G
1 2ξ ξ{ } { }∈, ) and let

T D g T D g
1 1 2 2

'' '' '' ''
,= =∑ ∑ξ ξξ ξ ξξ

Be elements in H '' . We have



Emmanuel and Akabuike: Hilbert space operator deformation analysis

AJMS/Oct-Dec-2019/Vol 3/Issue 4� 71

T T D g D g D g g T g g
1 2 1 2 1 2 1 2

' ' ' '
, , , ,* *( ) = ( ) = ( ) =∑∑ ∑∑η η ξ ξηξ ξ η η ξηξ ξ η η ξξηξ ( )∑∑

and in an analogous manner

T T T g g
1 2 1 2

'' ''
, , ,*( ) = ( )∑∑ ξ η η ξηξ

hence

T T T T
1 2 1 2

' ' '' ''
, ,( ) = ( )

Consequently, if we assign the elements

'' '',T D g T D g= =′ ′∑ ∑     � (1.3.20)

To the same, g Gξ{ }∈  this correspondence T T' ''↔  will be linear and isometric and it can then be 
extended by continuity to a linear and isometric mapping of all the elements of H '  onto H '' .
In particular, by setting g gε =  and gξ = 0  for, ξ ε≠ ,  we see that each element g  of the common 
subspace H  corresponds to itself. For all a∈Γ , we have

D D g D g D g D g D g D D ga a
a a

a a
' ' ' ' '' '' '' ''

ξ ξξ ξ ξξ ξ ξ ξ ξξξ ξ ξξ ξ∑ ∑ ∑∑ ∑= = ↔ = = ξξξ∑
(See 21); hence, T T↔ ''  implies that D T D Ta a

' ' '' ''↔  for all T T' ''
,  in the form (26), and then, in virtue of 

the community of the operator D Da a
' ''
, , for all T H' '∈  and T H'' ''∈ .

Therefore, the structures H D' '
, ,ξ H{ }  and H D'' ''

, ,ξ H{ }  are isometric. This completes the proof of this 
theorem.

CONTRACTIONS IN HILBERT SPACE

1.	 Whereas the projections of bounded self-adjoint operators are also self-adjoint, the projections of 
unitary operators are already of a more general type. In order that T prU= ,  with U  unitary, it is 
necessary that

TT PUT UT T0 0 0 0= =

for all T0 ∈H , that is, T 1,  and hence the operator T  must be a contraction. However, this condition 
is not only necessary but also sufficient.
Theorem 2.1:[20,21] Every contraction T  in the Hilbert space H  can be represented in an extension space 
H  as the projection of a unitary operator U  onto H . The theorem and the following simple construction 
of U , are due to Halmos. As in sec. 3 let us consider the product space H = ×H H  and the following 
operator of H ;

U
T S
Z T

=
−








*  where S I TT Z I T T= −( ) = −( )* *

,

1

2

1

2 � (2.1)

The relation T prU=  is obvious. We shall show that U  is unitary, or what amounts to the same thing, 
that U U*  and UU *  are equal to the identity operator I  in H . Since S  and Z  are self-adjoint, we have

U U
T Z
S T

T S
Z T

T T Z T S ZT
ST TZ S TT

*

*

*

* * *

*
=

−







 −








 =

+ −
− +










2

2 

UU
T S
Z T

T Z
S T

TT S TZ ST
ZT T S Z T T

*

*

* *

* * *
=

−










−







 =

+ − +
− + +






2

2





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Since Z I T T S I TT2 2= − = −* *
, , the diagonal elements of the product matrices are all equal to I . It 

remains to show that the other elements are equal to 0, i.e., that

ST TZ= � (2.2)

(The equation T S ZT* *=  follows from this by passing over to the adjoints of both members of [2.2]).
However, we have

S T I TT T T TT T T I T T TZ2 2= −( ) = − = −( ) =* * *
,

from which it follows by complete induction that

S T TZn n2 2=  for n = …0 1 2, , ,

Then, we also have

p S T Tp T2 2( ) = ( )
for every polynomial p λ( ) . Since S  and Z  are the positive square roots of S 2  and Z 2 , respectively, 
there exists a sequence of polynomials pn λ( )  such that

p S S p Z Zn n
2 2( ) → ( )→, .

Now (12) follows from the equation

p S T Tp Zn n
2 2( ) = ( )

by passing to the limit as n →∞ . This completes the proof of the theorem
2.	 The relationship between operators S  in an extension space H  of the space H  and their projections 

T prS=  onto H  is not multiplicative in general, that is the equations T prS T prS
1 1 2 2
= =,  do not in 

general imply TT prS S
1 2 1 2

= . For example, if we consider the operator U  constructed according to 
formula (2.1), we have prU T SZ2 2= − , which in general is not equal to T 2 .

The question arises: Is it possible to find, in a suitable extension space, a unitary operator U  such that 
the powers of the contraction T  (which are themselves contractions) are at the same time equal to the 
projections onto H  of the corresponding powers of U ?
If we are dealing with only a finite number of powers,

T T T k, , ,
2 ⊃

then the problem can be solved in the affirmative in a rather simple manner suitably generalizing the 
immediately preceding construction. Let us consider the product space H = ×…×H H,  with k +1  
factors, whose elements are ordered ( )k +1 -tuples T Tk1 1

, ,…{ }+  of elements in H  and in which the vector 
operations and metric are defined in the usual way:

c T T cT cTk k1 1 1 1
, , , , ,…{ } = …{ }+ +

T T g g T g T gk k k k1 1 1 1 1 1 1 1
, , , , , , }…{ }+ …{ } = + … +{+ + + +

T T g g T g T gk k k k1 1 1 1 1 1 1 1
, , , , , , ,…{ } …{ }( ) = ( ) +…+ ( )+ + + +

We embed H  in H  as subspace of the latter by identifying the element T in H  with the element 
T , , ,0 0…{ }  in H . The bounded linear operator T  in H  will be represented by matrices Tij( )  with k +1  
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rows and k +1  columns, all of whose elements Tij  are bounded linear operators in H . We have T = prT  
if and only if T T11 = .
Let us now consider the following operators in H :

U

T S

Z T

=

…
− …

− …
… … … … … …

−
… −



















0

0

0

0

0 0 0

1 0 0

0 1 0

0 0 0

0

0 1

0 0
*

...



























+k rows and columns1 �

Where S  and Z  have the same meaning as in the foregoing construction. The operator U  is unitary. 
This is proved in the same way as above, by a direct calculation of the matrices U U UU* *

, . To prove the 
relations

T prU n kn = = …( , , , )1 2 .

We must calculate the element in the matrix U n  having indices 1, 2, and then note that the latter is equal 
to T n  for n k= …1, , . We shall even prove more, namely, that the first row in the matrix U n kn = …( )1, ,  
is the following:

T T S T S T S Sn n n n n n

k n

, , , , , , ...
− − − −

−

− … −( )














1 2 2 3 3 1
1 0 0



.

This proposition is obvious for n =1, and we prove it true for n +1, assuming it true for n n k −( )1  by 
calculating the matrix U n+1  as the matrix product U Un . . We have thus proved the following theorem.
Theorem 2.2:[22] If T  is a contraction in the Hilbert space H , then there exists a unitary operator U  in 
an extension space H  such that

T prU n kn n= = …0 1, , ,

(the case n = 0  is trivial), for every given natural number k . The product space H H×…×  with k +1  
factors can be written for H .
3.	 It is important in the above construction that k  is a finite number; however, the theorem is also true 

for k = ∞.
Proof: Suppose Γ  is the additive group of all integers n . Every representation of Γ  is then of the form 
U n{ }  where U  is a unitary operator. Suppose T  is a contraction in H . Set

T
T for n

T for n
n

n

n
=

= …

= …







0 1

0 1

, , ,

, , ,;
*

hence T I0 =  and T Tn n− = *
.  We shall show that Tn , considered as function defined on Γ , is of positive 

type, that is

T g gn m n mnm −( )∑∑ ,  0 � (2.3)

for every sequence gn{ }−∞
∞  of elements in H  almost all of which are equal to 0. We first consider the case 

of a complex space H . We set

T r r e Tn in
n,ϕ ϕ( ) = −∞

∞∑ � (2.4)
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for 0 1 r <  and 0 2 ϕ π ; in view of the fact that Tn 1, this series converges in norm. Setting 
z rei= ϕ  we have

T r I z T I z Tn n n n
,

*ϕ( ) = +





 + +








∞ ∞∑ ∑1

2

1

21 1

= +





 = +( ) −( )∞ −∑2

1

2 1

1
Re ReI z T I zT I zTn n

Hence, for T ∈H  and g I zT T= −( )−1 ,  we have in particular that

T r T T I zT I zT T T I zT g I zT g, , , ,ϕ( )( ) = +( ) −( )( ) = +( ) −( )( )−
Re Re

1

= ( ) + ( ) − ( ) − ( )  = −Re g g z Tg g z g Tg zz Tg Tg g z Tg, , , ,
2 2 2

0  (33)

since z T<1 1, .  Since this result holds for all T ∈H , we have in particular that

p r T r T T, , ,ϕ ϕ ϕ ϕ( ) = ( ) ( ) ( )( ) 0 � (2.5)

with

T e gin
nn

ϕ ϕ( ) = −
=−∞

∞∑
where gn{ }  is the sequence of elements in H  considered in inequality (2.3). If in (2.6) we replace 
T r,ϕ( )  and T ϕ( )  by their series expansions, we obtain that

p r r e T g gk i k m n
k n mk m n

, ,
, ,

ϕ ϕ( ) = ( ) =+ −( )∑

e r T g giI
I

I n m
I n m n mm n

ϕ∑ ∑ + −
+ −( ),,

 0

whence,

r T g g p r dn m
n m n mm n

−
−( ) = ( )∑ ∫, ,

,

1

2
0

0

2

π
ϕ ϕ

π


and, on the other hand, we have

{ } { } { }2 2 22 2 2 2, ,  ,T g h Tg Th Tg Th g h g h= = + + =

It is also easily seen that

T g h T g T h* * *
, ,{ } = { } .

It follows that

T g h T g T h'' '' ''
, ,{ } = { }  and T g h T g T h*'' *'' *''

, { , }{ } =

for n = …0 1, ,  and hence

T g h T g T hn n n, ,{ } = { }

For n = ± ± …0 1 2, , ,
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But, since quality (2.3) has already been proved for complex spaces, we shall have

Tn m n mnm −( )∑∑ ϕ ϕ,  0 � (2.7)

For ϕn n ng h={ },  (where gn = 0  and hn = 0  for almost all n ). When hn = 0  for all n,  we have

T T g gn m n m n m n m− −( ) = ( )ϕ ϕ, , ,

and hence inequality (2.7) then reduces to inequality (2.3), which completes the proof of (2.3) also in the 
case of a real space H .
We can then apply the principal theorem, which yields theorem 1.3.
Theorem 2.3:[23] If T  is a contraction in the Hilbert space H , then there exists a unitary operator U  of 
an extension space H  such that the relation

T prUn n=

is valid for n = …0 1 2, , ,  Furthermore, one can require that the space H  be minimal in the sense that it is 
spanned by the elements of the form U Tn  where T ∈H  and n = ± ± …0 1 2, , , ,  in this case, the structure 
H U, ,H{ }  is determined to within an isomorphism.

An analogous theorem is true for semi-groups and one-parameter semi-groups of contractions, that is for 
families T1{ }  of contractions (where 0 t < ∞) or −∞ < ∞ t , according to the case at hand) such that

T I T T Tt t t t0 1 2 1 2
= = +, ,

And for which one assumes further that Tt  depends strongly or weakly continuously on t ; weak continuity 
means that T f g, ,( )  is a continuous numerical-valued function of t  for every pair T g,  of elements H .
Proof: Now, let Γ  be the additive group of all real numbers t . Then, the representations of Γ  are one-
parameter groups Ut{ }  of a unitary operator.
Let Tt t{ } 0

 be the one-parameter semi-group of contractions considered in theorem. We set

T Tt t= −
*

for t < 0;  then Tt  will be weakly continuous function of t t,� ,−∞ < < ∞  and we shall have

T I0 =  and T Tt t− = *  for −∞ < < ∞t .

We[23] shall show that Tt , considered as a function on Γ , is of positive type, that is,

T h ht s t sts −( )∑∑ ,  0 � (2.8)

for every family ht{ }  of elements in H  such that ht = 0  for almost all values of t.  Suppose t t tr1 2
, ,...,  

are those values of t  for which 0.th ≠  We assign to each t n rn = …( )1, ,  a sequence of rational numbers 
t vnv = …( )1 2, , ,  which converges to t  in such a manner that the numbers t n rnv ( , , , )= …1 2  are distinct 
for every fixed index v . Since Tt  is a weakly continuous function of t,  setting

f h n rn tn
= = …( )1 2, , , ,

We have

T h h T f ft s t s t n mn

r

m

r

ts n tm
− ==( ) = ( )−∑∑∑∑ , ,

11

= ( )→∞ == −∑∑lim ,v t n mn

r

m

r T f f
nv tmv11

� (2.9)
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For every fixed v,  the rational numbers t n rnv ( , , , )= …1 2  are commensurable, that is they can be written 
in the form

t dnv nv v=τ

with a dv > 0  and distinct integers τ nv . Then, we have

T T
T

T
t r dv

d nv mv

d
nv tmv nv tmv

v

nv mv

v

mv tnv
− −

−

−
= =

( )
( )( )

τ

τ

τ τ τwhen �

*
wwhenτ τnv mv�







� (2.10)

Where Tn
v( )  is defined in a manner analogous to (2.2), starting with the transformation T Tv

dv
( ) = . Since 

the latter is a contraction, inequality (2.3) holds for it also; choosing the gn  in (2.3) in such a way that

g fn p=  when n pv=τ ,

gn = 0  when n  is not equal to any of the τ qv q r= …( )1 2, , , ,

the first member of inequality (2.2) reduces to the second member of equation (2.10), and hence the latter 
is  0;  and this is true for all fixed values of v . Inequality (2.8) follows, in virtue of (2.9).
Then, we can apply the principal theorem and obtain that

T prUt t= ,

and that in the case where the extension space H  in question is minimal, the structure H Ut, ,H{ }  is 
determined to within an isomorphism. In this case, Ut  is also a weakly (and hence strongly) continuous 
function of t , and this in virtue of proposition (3) of the principal theorem and because of the fact that 
Tt tn+  is obviously a weakly continuous function of t  for and arbitrary fixed value t0  of t . This completes 
the proof of theorem 2.3.
Theorem 2.4:[23] If Tt t{ } 0

 is a weakly continuous one-parameter semi-group of contractions in the 
Hilbert space H , then there exists a one-parameter group Ut t{ }−∞< <∞

 of a unitary operator in an extension 
space H , such that

T prUt t=  for t  0

Furthermore, one can require that the space H  be minimal in the sense that it is spanned by elements of 
the form U ft , where f ∈H  and −∞ < < ∞t ; in this case, Ut  is strongly continuous and the structure 
H Ut t

, ,H{ }−∞< <∞
 is determined to within an isomorphism.

These two theorems can be generalized to discrete or continuous semi-groups with several generators. 
We shall formulate only the following generalization of theorem 2.3.
Proof: We now choose “  to be the group of all the “vectors” n n

R
={ }( )

∈

ρ

ρ
 whose components are 

integers, almost all of which are equal to 0. If T
R

ρ

ρ

( )
∈

{ }  is the given system of pairwise doubly permutable 
contractions, we set

T Tn R n= ∏ ∈ ( )ρ ρ
( ) � (2.11)

Where Tn
ρ( )  is defined in a manner analogous to (2.2). Since n( )ρ = 0  for almost all ρ , almost all 

the factors in the product (2.11) are equal to I ; therefore, product has meaning even in the case where 
the set R  in infinite. We note which is essential that since they T ( )ρ  are pairwise doubly permutable, the 
factors in (2.11) are all permutable. We obviously have T I T To n n= =−,

* , where o denotes the vector all of 
whose components equal zero.
It remains to prove that Tn , considered as a function on the group Γ , is of positive type, that is
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T g gn m n mmm −( )∑∑ ,  0 � (2.12)

for every family gn{ }  of elements in H  such that gn = 0  for almost all n∈Γ.  If one considers only 
those vectors n  for which 0ng ≠ , there is a finite number of indices ρ ,  say ρ ρ ρ

1 2
, , ,… r , such that all 

the components of the vectors n  whose indices are different from these are equal to 0. Since the factors 
with n( )ρ = 0  in the product (2.11) can be omitted, it suffices to consider the sums of the type

… …( )=−∞

∞
−
( )

−
( )

… …=−∞

∞∑ ∑n n m n m
r

n n m mn
T T g g

r r r rr1 1 1 1 1

1

, , , ,
, � (2.13)

where we have set T i( )  in place of T i( )ρ  for simplicity in writing. In the case of a complex space H  one 
can reason as follows. We set

( ) ( ) ( ) ( )1 1 1

11

1
1, , ,  r r r

rr

n n i n n r
r n nn n

T r r e T Tϕ ϕϕ ϕ ∞ ∞ +…+ +…+

=−∞ =−∞
… = … …∑ ∑

= ( )( )
=∏ T ri

ii

r
, ,ϕ

1

for 0 1 r <  and 0 2 ϕ πi , where the factors in the last member have a meaning analogous to (2.4). 
Since these factors are, according to (2.13), ≧0, and since they are pairwise permutable, their product is 
also O . Hence, we have in particular that

T r g gr r r, , , , , , , ,ϕ ϕ ϕ ϕ ϕ ϕ
1 1 1

0…( ) …( ) …( )( )
with

g e gr n
i n n

n nn
r r

rr
ϕ ϕ ϕ ϕ
1

1

1 1

1
, ,

( )

, ,
…( ) = …

=−∞

∞ − +…+
…=−∞

∞∑ ∑
Integrating with respect to each variable ϕi  from 2≠ , and then letting r  tend to I , we have the result 
that the sum (2.13) is ≧0.
This proves inequality (2.12) for the case of complex space. The case of a real space can be reduced to 
that of a complex space in the same way this was done in the proof of 2.2.
The principal theorem can then be applied. To obtain theorem 2.3, it only remains to observe that every 
representation Un{ }  of the group Γ  is of the form

U U n nn

n

R
= 



 = { }( )( ) ( )

∈∏ ρ ρ ρ

ρ

( )

where U ρ( ){ }  is a system of permutable unitary operator. This follows from the fact that n  can be 
written in the form

n n e
R

=
∈∑ ( )ρ

ρρ

where eρ  denotes the vector all of whose components equal zero except the component with index ρ , 
which s equal to 1; all one has to do is set

U Ue
( )ρ

ρ
=

Theorem 2.5:[23] Suppose T
R

ρ

ρ

( )
∈

{ }  is a system of pairwise doubly permutable contraction in the Hilbert 
space H . There exists in an extension space H , a system U

R

ρ

ρ

( )
∈

{ }  of pairwise unitary transformations 
such that

T pr Ui
i

i
in

i

r n

i

rρ ρ( )
=

( )
=





 = 



∏ ∏1 1
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for arbitrary ρi R∈  and integers ni , provided the factor T i
inρ( )



  is replaced by T i

inρ( )
−







*

 when ni < 0. 

Moreover, one can require that the space H  be minimal in the sense that it be spanned by the elements 
of the form U Ti

in

i

r ρ( )
=




∏ 1

 where T ∈H ; in this case, the structure H U
R

, ,ρ

ρ

( )
∈

{ }H  is determined to 
within an isomorphism
Proof: Before this proof, we consider applications of the theorem as stated below
a.	 Invariant elements. If the element t  is invariant with respect to T , then it is also invariant with 

respect to T*

Proof of (a): We have T prU= ,  with U  unitary from which it follows that T prU prU* *= = −1 . The 
equations T TT PUT UT T= = =,� �  imply that UT T= .  Hence, we have T U T PU T T T= = =− −1 1 * , 
which completes the proof of the theorem.
b.	 Ergodic theorems. For all T ∈H  the limits

lim
n m
n m kn m

T
Tk=m

n-

− →∞
>

− ∑0

1 1 � �

and

0
1lim v t

v

TTdt
rµ

µ
> µ
− →∞ −µ ∫

v

exist in the sense of strong convergence of elements, where the integral is defined as the strong limit of 
sums of Riemann type
Proof: By theorems 4.3 and 4.4, we have T prU kk k= = …( , , )0 1  and T prU tt t= ( ) 0  with Ut  strongly 
continuous; hence, Tt  is also strongly continuous. For T ∈H , we have

T T P U Tk
m

n k
m

n
=

− −∑ ∑1 1

and

TTdt P U Tdtt

v

t

v
=∫ ∫µ µ

respectively, and the propositions thus follow from the ergodic theorems of J. Von Neumann on unitary 
operators. Dunford’s ergodic theorem on several permutable contractions can be reduced in an analogous 
manner, by theorem 2.5, to the particular case of the unitary operator, but this only under the additional 
condition that these contractions be doubly permutable
c.	 Theorems of VON NEUMANN and HEINZ. Suppose

u z c c z c zn
n( ) = + +…+ +…

0 1

Is a power series in the complex variable z  with

c c cn0 1
+ +…+ +…< ∞

Set

u T c I c T c Tn
n( ) = + +…+ +…

0 1

If the function u(z)  satisfies one or the other of the inequalities

u z u z z( ) ( )� � �1 0 1, , | | ,Re with
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then we have

u T 1, Reu(T) 0( ) � �

respectively.
Proof: It follows from the representation of powers: T prU kk k= = …( , , )0 1  that

( ) ( )U T pr u U=

Let

U e dEi= ∫ λ
λ

π

0

2

be the spectral decomposition of the unitary operator U ;  we then have

u T T Pu U T u U T u e d E T Ti( ) = ( ) ( ) = ( ) ( )∫0

2

0

2

0

2 2

0

2

0 0
 λπ

λ , ,

Re Re Reu T T T Pu U T T u U T T u e d E T Ti( )( ) = ( )( ) = ( )( ) = ( ) (0 0 0 0 0 0 0 0
, , , ,

λ
λ ))∫0

2π

for T0 ∈H . The above propositions follow in an obvious manner from formulae
d.	 Let

p a e kk
it

k
θ θ( ) =∑

Be a trigonometric series with arbitrary real tk  and such that

akk
< ∞∑ � (2.14)

Set

p T a Tk tk( ) =∑
If the function ( )p   satisfies one or the other of the inequalities

p 1,Re p q 0θ( ) ( )� �  for all real θ ,

then

p T p T( ) � �1 0, ( )Re

respectively.
Proof: The proof proceeds exactly as for (c) but now using Theorem 4.4 and Stone’s theorem in virtue 
of which there is a spectral decomposition of Ut  of the form

U e dEt
it=

−∞

∞

∫ λ
λ

Analogous theorems could be stated (under suitable hypotheses which assure convergence) for 
trigonometric integrals.
4.	 Isometric operators in Hilbert space H  (into a subspace of H ) are particular cases of contractions. If 

the isometric operator T  is represented as the projection of a unitary operator U , we have

T TT PUT UT= =0 0 0
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for all T ; since, on the other hand, UT T
0
= ,  we necessarily have PUT UT0 0= , and hence TT UT0 0= ; 

that is, U  is an extension of T .
It, therefore, follows from our theorems on contraction that every isometric transformation has a unitary 
extension and that for every weakly continuous one-parameter semi-group of isometric operator Tt , 
there exists a strongly continuous one-parameter group of unitary transformation Ut  in an extension 
space such that U Tt t⊇ .
The last theorem was proved earlier by COOPER in an entirely different way.

APPLICATION OF THE ANALYTIC CONTRACTION AND EXTENSION TO 
ELASTICITY DEFORMATION AND STRESS

Deformation and stress

In this section, we discuss how the position of each particle may be specified at each instant and we 
introduce certain measures of the change of shape and size of infinitesimal elements of the material. 
These measures are known strains and they are used later in the derivation of the equations of elasticity. 
We also consider the nature of the forces acting on arbitrary portions of the body and this leads us into 
the concept of stress.

Motion, material, and spatial coordinates
We wish to discuss the mechanics of bodies composed of various materials. We idealize the concept of 
a body by supposing that it is composed of a set of particles such that, at each instant of time t , each 
particle of a set is assigned to a unique point of a closed region  t  of three-dimensional Euclidean space 
and that each point of  t  is occupied by just one particle. We call  t  the configuration of the body at 
time t .
To describe the motion of the body, that is, to specify the position of each particle at each instant, we 
require some convenient method of labeling the particles. To do this, we select one particle configuration 
  and call this the reference configuration. The set of coordinates X X X

1 2 3
, ,( ) , or position vector X , 

referred to fixed Cartesian axes of a point of   uniquely determines a particle of the body and may be 
regarded as a label by which the particle can be identified for all time. We often refer to such a particle as 
the particle X . In choosing,   we are not restricted to those configurations occupied by the body during 
its actual motion, although it is often convenient to take   to be the configuration 0  occupied by the 
body at some instant which is taken as the origin of the time scale t . The motion of the body may now 
be described by specifying the position x  of the particle X  at time t  in the form of an equation

x X t= ( )χ , � (3.1)

[Figure 1] or in component form,

x X X X t x X X X t x X X X t
1 1 1 2 3 2 2 1 2 3 3 3 1 2 3
= ( ) = ( ) = ( )χ χ χ, , , , , , , , , , , � (3.2)

And we assume that the functions χ χ
1 2
, , and χ3  are differentiable with respect to X X X

1 2 3
, ,  and t  

as many as required. Sometimes we wish to consider only two configurations of the body, an initial 
configuration and a final configuration. We refer to the mapping from the initial to the final configuration 
as a deformation of the body, which is either contraction or expansion. The motion of the body may be 
regarded as a one-parameter sequence of deformations.
We assume that the Jacobian

J
X

i Ai

A

=
∂
∂








 =det , , , ,

χ
1 2 3 � (3.3)

Exist at each point of  t , and that

J > 0 � (3.4)
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The physical significance of these assumptions is that the material of the body cannot penetrate itself and 
that material occupying a finite non-zero volume in   cannot be compressed to a point or expanded to 
infinite volume during the motion. Mathematically (3.4) implies that (3.1) has the unique inverse

X x t= −χ 1
( , ) � (3.5)

Now at the current time t  the position of a typical particle P  is given by its Cartesian coordinates 
x x x
1 2 3
, , ,( )  but as mentioned above, P  continues to be identified by the coordinates X X X

1 2 3
, ,( )  

which denoted its position in  . The coordinates X X X
1 2 3
, ,( )  are known as material (or Lagrangian) 

coordinates since distinct sets of these coordinates refer to distinct material particles. The coordinates 
x x x
1 2 3
, ,( )  are known as spatial (or Eulerian) coordinates since distinct sets refer to distinct points of the 

space. The values of x  given by equation (3.1) for a fixed value of X  are those points of space occupied 
by the particle X  during the motion. Conversely, the values of X  given by equation (3.5) for a fixed 
value of x  identify the particles X  passing through the point x  during the motion.
From now on, when upper or lower case letters are used as suffixes, they are understood generally to 
range over 1, 2, and 3. Usually, upper case suffixes refer to material coordinates, lower case to spatial and 
repetition of any suffix refer to summation over the range. For example, we write xi  for x x x X A1 2 3

, , ,( )  
for X X X

1 2 3
, ,( )  and x xi i  denotes x x x

1

2

2

2

3

2+ + .
When a quantity is defined at each point of the body at each instant of time, we may express this quantity 
as a function of X A  and t  or of xi  and t . If X A � and t  are regarded as the independent variables, then the 
function is said to be a material description of the quantity; if xi  and t  are used then the corresponding 
function is said to be a spatial description. One description is easily transformed into the other using (3.1) 
or (3.5). The material description spatial description ψ X t,( )  has a corresponding spatial description 
ψ ( , )x t  related by

ψ χ ψ− ( )( ) =1 x t t x t, , ( , ) � (3.6)

or

ψ χ ψX t t X t, , ,( )( ) = ( ) � (3.7)

To avoid the use of a cumbersome notation and the introduction of a large number of symbols, we usually 
omit explicit mention of the independent variables and also use a common symbol for a particular 
quantity and regard it as denoting sometimes a function of X A  and t  and sometimes the associated 
function of xi  and t . The following convention for partial differentiation should avoid any confusion.

ℓ
ℓ

Figure 1: Cartesian coordinate of a typical particle
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Let u  be the common symbol used to represent a quantity with the material description ψ  and spatial 
description ψ  (these may be scalar-, vector-, or tensor-valued functions) as related by (3.6) and (3.7). 
We adopt the following notation for the various partial derivatives:

( ) ( ), ,    ,  K
K

Duu X t X t
X Dt t
ψ ψ∂ ∂

= =
∂ ∂

� (6.8)

u
x
x t u

t t
x ti

i

=
∂
∂

( ) ∂
∂

=
∂
∂

ψ ψ
, , ( , ) � (6.9)

The material time derivative
Suppose that a certain quantity is defined over the body and we wish to know its time rate of the change 
as would be recorded at a given particle X  during the motion. This means that we must calculate the 
partial derivative with respect to time of the material description ψ  of the quantity keeping X  fixed. In 
other words, we calculate ∂ ∂ψ ( , ) / .X t t  This quantity is known as a material time derivative. We may 
also calculate the material time derivative from the spatial description ψ . Using the chain rule of partial 
differentiation, we see from (3.7) that

∂
∂

( ) = ∂
∂

( ) + ∂
∂

( ) ∂
∂

( )ψ ψ χ ψ
t
X t

t
x t

t
X t

x
x ti

i

, , , , � � (3.10)

remembering, of course, that repeated suffixes imply summation over 1, 2, and 3. Consider now a given 
particle X 0 . Its position in the space at time t  is

x X t= ( )χ
0
,

and so its velocity and acceleration are

d
dt

X tχ
0
,( )  and d

dt
X t

2

2 0

χ
,( )

respectively. We therefore define the velocity field for the particles of the body to be material time 
derivative ∂ ∂χ ( , ) /X t t , and use the common symbol v  to denote its material or spatial description

v
t
X t Dx

Dt
=
∂
∂
( ) =χ , � (3.11)

Likewise, we define the acceleration field f  to be the material time derivative of v

f Dv
Dt

= � (3.12)

Moreover, in view of (6.10) the material time derivative of u  has the equivalent forms

Du
Dt

u
t
v ui i=

∂
∂
+ � (3.13)

In particular, the acceleration (3.12) may be written as

f Dv
Dt

v
t

v v= =
∂
∂
+ ∇( ). � (3.14)

where the operator ∇  is defined relative to the coordinates xi , that is

∇ =
∂
∂

∂
∂

∂
∂









x x x

1 2 3

, , � (3.15)
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In suffix notation (6.14) becomes

f Dv
Dt

v
t
v vi

i i
j i j= =

∂
∂

+ , � (3.16)

The deformation-gradient tensor
We have discussed how the motion of a body may be described. In this section, we analyze the deformation 
of infinitesimal elements of the body which results from this motion. Suppose that   coincides with the 
initial configuration 

0
,  and that two neighboring particles P  and Q  have positions X  and X dX+  in 

.  Then, at time t  their positions in  t  are x  and x dx+ . Where

( ) ( ), ,    ,χ χ= + = +x X t x dx X dX t � (3.17)

and the components of the total differential dx  are given in terms of the components of dX  and the 
partial derivatives of χ  by

dx
X

X t dX x dXi
i

A
A i A A=

∂
∂

( ) =
χ , , � (3.18)

The quantities xi A,  are known as the deformation gradients. They are the components of a second-order 
tensor known as the deformation-gradient tensor, which we denote by F .

Strain tensors
Denoting the deformation gradients xi A,  by Fi A, , equation (3.18) may be written

dx F dXi iA A= � (3.19)

In view of our assumption (3.4), the tensor F  is non-singular, and so permits the unique decompositions

F RU F VR= =,� � � � � � � (3.20)

Where U  and V  are positive definite symmetric tensors and R  is proper orthogonal. We note that a 
proper orthogonal tensor R  has the properties

R R RR I RT T= = =, det 1 � (3.21)

Where RT  denotes the transpose of R,  and I  denotes the unit tensor. A positive definite tensor U  has 
the property

xU xi ij j > 0 � (3.22)

For all non-null vectors x . To see the physical significance of the decomposition (3.20), we first write 
(3.19) in the form

dx R U dXi iK KL L= � (3.23)

or equivalently,

dx R dy dy U dXi iK K K KL L= =,� � � � � � � � � � � (3.24)

In other words, the deformation of line elements dX  into dx  caused by the motion, may split into two 
parts. Since U  is a positive-definite symmetric tensor, there exists a set of axes, known as principal 
axes, referred to which U  is diagonal; and the diagonal components are the positive principle values 
U U U
1 2 3
, ,  of U . Equation (3.24), referred to these axes, becomes
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dy U dX dy U dX dy U dX
1 1 1 2 2 2 3 3 3
= = =, , � (3.25)

In the deformation represented by equations (3.25), the ith  component of each line element is increased 
or diminished in magnitude according to as Ui >1 or Ui <1. This part of the deformation
Therefore, amounts to a simple stretching or compression in three mutually perpendicular directions. 
(Of course, if Ui =1 the corresponding component of the line element is unchanged). The values of Ui  
are known as the principal stretches. Equation (3.24) describes a rigid body rotation of the line elements 
dy  to dx . Hence, the line elements dX  may be thought of as being first translated from X  to x , then 
stretched by the tensor U  as described above, and finally rotated as a rigid body in a manner determined 
by R  [Figure 2]. The decomposition (3.20) may be interpreted in a similar way, although it should be 
noted that in this case, the rotation comes before the stretching. The tensors U  and V  are known as the 
right and left stretching tensors, respectively.
Although the decomposition (3.20) provide useful measures of the local stretching of an element of 
the body as distinct from its rigid body rotation, the calculation of the tensors U  and V  for any but the 
simplest deformations can be tedious. For this reason, we define two more convenient measures of the 
stretching part of the deformation. We define the right and left Cauchy–Green strain tensors

C F F B FFT T= =,� � � � � � (3.26)

respectively. Clearly C  and B  are symmetric second-order tensors. The tensor C  is easily related to U  
since using (3.20) and (3.21)

C U R RU U U UT T T= = = 2 � (3.27)

Similarly, we can show that

B V= 2 � (3.28)

As can be seen from the definitions (3.26), when F  has been found, the tensors B  and C  are easily 
calculated by matrix multiplication; and in principle, U  and V  can be determined as the unique positive-
definite square roots of C  and B  are diagonal. In such cases, U  and V  can be found easily.
Example 3.1:
Find the tensors F C B U V, , , ,  and R  for the deformation

x X x X X x X X
1 1 2 2 3 3 3 2
= = − = +, ,α α � (3.29)

where α ( )> 0  is a constant and interpret the deformation as a sequence of stretches and a rotation.
For this deformation

F J= −
















= + >
1 0 0

0 1

0 1

1 0
2α

α
α, � (6.30)

Figure 2: Deformation as a sequence of stretches and a rotation
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Hence,

C F FT= =
−

















−















= +

1 0 0

0 1

0 1

1 0 0

0 1

0 1

1 0 0

0 1 0

0 0

2α
α

α
α

α
11

2+















α

� (3.31)

and therefore

U = +( )
+( )





















1 0 0

0 1 0

0 0 1

2

1

2

2

1

2

α

α

� (3.32)

It can easily be shown likewise that B C=  and V U= . We may calculate R  from the relation R FU= −1
. 

Thus,

R = −
















+( )
+( )



















1 0 0

0 1

0 0 1

1 0 0

0 1 0

0 0 1

2

1

2

2

1

2

α α

α



= +( ) − +( )
+( ) +( )




















−

− −

1 0 0

0 1 1

0 1 1

2

1

2 2

1

2

2

1

2 2

1

2

α α α

α α α 

� (3.33)

Now, let α θ θ π= < <





tan ,0

1

2
 then

R = −
















1 0 0

0

0

cos sin

sin cos

θ θ
θ θ

which represents a rotation through an angle � θ  about the 1-axis, using the usual corkscrew convention 
for the sign of the angle. Thus, the deformation may be accomplished by first performing stretches of 

magnitudes 1 2

1

2+( )α  in the two and three-directions and then a rotation about the 1-axis. Since in this 
example B C=  and V U= , these operations may be reversed in order.
If a portion of the body moves in such a manner that the distances between every pair of particles remain 
constant that portion is said to move as a rigid body. For such a motion no stretching of line elements 
occurs and so at each particle of the given portion,

B C U V I F R= = = = =,� � � � (3.34)

In general, of course, the motion of the body does produce changes in the lengths of line elements and 
analysis of these length changes leads us to an alternative interpretation of C  and B . Suppose that dL  
and dl  denote the lengths of the vector line elements dX  and dx , respectively. Then, using (3.18) and 
(3.26) and the Kronecker delta (defined by δKL K L K L= ≠ =0, , ),

dl dL dx dx dX dXi i K K( ) − ( ) = −2 2
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= −x x dX dX dX dXi K i L K L K K, ,

= −( )C dX dXKL KL KL Lδ � (3.35)

and so the tensor C  enables us to calculate the difference between the squared elements of length in the 
reference and current configurations. Alternatively, if we define the inverse deformation gradients using 
(3.5) as

X
x

x tK i
i

K,
,=

∂
∂

( )−χ 1 � (3.38)

then, since X xK i i A KA, , = δ  by chain rule of partial differentiation, it follows from (6.18) that

dX X dxK K i i= , � (3.39)

Hence, we may write

dl dL dx dx X X dx dxi i K i K j i i( ) − ( ) = −2 2

, ,

It can easily be verified, using (3.26) and the result F FT T( ) = ( )− −1
1
,  that

F F B X X B
T

K i K j ij
− − − −( ) = =1 1 1 1

,
, ,

� (3.40)

and therefore

dl dL B dx dxij ij i j( ) − ( ) = −( )−2 2 1δ � (3.41)

The tensor B  also provides us with a means of calculating the same difference of squared elements of 
length. As we have already noted, B  and C  are second-order symmetric tensors. Their principal axes 
and principal values are real and may be found in the usual manner (Spencer [1980] Sections 2.3 and 
9.3). The characteristic equation for C  is

det CKL KL−( ) =λδ 0

that is,

λ λ λ3

1

2

2 3
0− + − =I I I � (3.42)

where

I C trCKK1 = = � � �

I C C C C trC trCKK LL KL KL2

2 21

2

1

2

1

2
= −( ) = ( ) − � (3.43)

I C
3
= det

and tr  denotes the trace. The quantities I I I
1 2 3
, ,  are known as the principal invariants of C .

We also note here a useful physical interpretation of I
3
.  In view of the definitions (3.3) and (6.26)

I C F J
3

2 2= = ( ) =det det � (3.44)

and if a given set of particles occupies an element of volume dV0  in   and dV  in  t  then using (6.21),
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J dV dV= /
0
� (3.45)

Thus, recalling (6.4)

dV dV I/
0 3
= √ � (3.46)

If no volume change occurs during the deformation, the deformation is said to be isochronic and

J I= =1 1
3

, � (3.47)

The strain invariants are also of fundamental importance in the constitutive theory of elasticity and we 
also find the following relation useful:

I I tr B
2 3

1= ( )− � (3.48)

To prove this, we first note that from the Cayley–Hamilton theorem (Spencer [1980] Section 2.4), a 
matrix satisfies its own characteristic equation. Since the principal invariants of B  are identical to those 
of C B,  must satisfy the equation

B I B I B I I3

1

2

2 3
0− + − = � (3.49)

Now, B  is non-singular, so multiplying (6.49) by B−1 , we find that

B I B I I I B2

1 2 3

1= − + −

Taking the trace of this equation, we have

( ) ( )2 2 1
1 2 3 3tr B I I I tr B−= − + � (3.50)

And using (3.43), (3.50) reduces to (3.48).

Homogeneous deformation
A deformation of the form

x A X ai iK K i= + � (3.51)

in which A  and a  are constants, is known as a homogeneous deformation. Clearly, F A=  and J A= det . 
Particularly, simple examples of such deformations are given below
i.	 Dilatation
Consider the deformation

x X x X x X
1 1 2 2 3 3
= = =α α α, , � (3.52)

where α  is a constant, then

F I B C I J= = = =α α α, ,
2 3 � (3.53)

and so, to satisfy (3.4), we must have α > 0 . The strain invariants (3.41) are easily seen to be

I I I
1

2

2

4

3

6
3 3= = =α α α, , � (3.54)

In view of (3.45), we see that if α >1  the deformation represents an expansion; if α <1 the deformation 
becomes a contraction.
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ii.	 Simple extension with lateral extension or contraction
Suppose that

x X x X x X
1 1 2 2 3 3
= = =α β β, , � (3.55)

Then,

F J=
















=
α

β
β

αβ
0 0

0 0

0 0

2
, � (3.56)

and so α > 0 . If α >1 , the deformation is a uniform extension in the 1-direction. If β > 0  the diagonal 
terms of F  are all positive so that U F=  and R =1 ; β  measures the lateral extension β >( )1 , or 
contraction β <( )1 , in the 2,3-plane.
If β < 0  then

U R= −
−

















= −
−

















α
β

β

0 0

0 0

0 0

1 0 0

0 1 0

0 0 1

,

In this case, –β  measures the associated lateral extension or contraction and a rotation through an angle 
π  about the 1-axis is included in the deformation.
If the material is incompressible, only isochoric deformation is possible in which case

J = =αβ 2 1� (3.57)

This means that β  is less than, or greater than, unity according to as to whether α  is greater than, 
or less than unity. In other words, an extension in the 1-direction produces a contraction in the lateral 
directions and vice versa. The strain tensors are found to be

B C= =

















α
β

β

2

2

2

0 0

0 0

0 0

� (3.58)

and the invariants are

I I I
1

2 2

2

2 2 4

3

2 4
2 2= + = + =α β α β β α β, , � (3.59)

Example 3.2:
The previous two deformations are special cases of

x X x X x X
1 1 1 2 2 2 3 3 3
= = =λ λ λ, , � (3.60)

Where λi i( , , )=1 2 3  are constants. Show that, for the deformation (3.60) to satisfy J > 0 , at least one of 
the λi  has to be positive. Interpret the deformation geometrically in the case when all the λi  are positive 
and show that in all cases the principal invariants are

I I I
1 1

2

2

2

3

2

2 1

2

2

2

2

2

3

2

3

2

1

2

3 1

2

2

2

3

2= + + = + + =λ λ λ λ λ λ λ λ λ λ λ λ, , � (3.61)

iii.	 Simple shear
Consider the deformation

x X X x X x X
1 1 2 2 2 3 3
= + = =κ , , � (3.62)
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where κ  is a constant. The particles move only in the 1-direction, and their displacement is proportional 
to their 2-coordinate. This deformation is known as a simple shear. Plane parallel to X

1
0=  is rotated 

about an axis parallel to the three-axis through an angle θ κ= −
tan

1 , known as the angle of shear. The 
sense of the rotation is indicated in Figure 3. The planes X 3 =  constant are called shearing planes; and 
lines parallel to X 3 -axis are known axes of shear. The deformation-gradient tensor is

F =
















1 0

0 1 0

0 0 1

κ
� (3.63)

and the Cauchy-Green strain tensors are

C F F B FFT T= = +
















= =
+















1 0

1 0

0 0 1

1 0

1 0

0 0 1

2

2κ
κ κ

κ κ
κ, � (3.64)

The tensor B−1  may be found using the formula

B B B− =1 adj / det � (3.65)

where adjB  denotes the adjoint matrix of B . Thus

B− =
−

− +
















1 2

1 0

1 0

0 0 1

κ
κ κ � (3.66)

The strain invariants are

I I I
1

2

2

2

3
3 3 1= + = + =κ κ, , � (3.67)

Non-homogeneous deformations
Deformations which are not of the form (3.51) are referred to as non-homogenous deformations. We now 
discuss two such deformations which may be applied to either a solid or hollow circular cylinder. In each 
case, we take our coordinate system such that the X 3 -axis coincides with the axis of the cylinder and the 
base lies in the plane X

3
0= .

2

1

Figure 3: Non-homogenous deformations
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i.	 Simple torsion
Consider the deformation in which each cross-section remains in its original plane but is rotated through 
an angle τ X 3  about the three-axis, where τ  is a constant called the twist per unit length (see 3.3). This 
deformation is referred to as simple torsion. Since each cross-section remains in its original plane,

x X3 3= � (3.68)

To find the remaining equations which specify this deformation, we consider the typical cross-section, 
as shown in Figure 4, which is at a distance X 3  from the base of the cylinder. If P  is the particle whose 
initial coordinates are X X

1 2
,( )  then we may write

X R X R
1 2
= =cos , sinα α � (3.69)

where R X X= +( )1

2

2

2

1

2 .  After the deformation this particle occupies the point p  with coordinates 
x x
1 2
,( )  where from the figure it follows that

x R X x R X
1 3 2 3
= +( ) = +( )cos , sinτ α τ α � (3.70)

Expanding the sine and cosine functions and using (3.69) we obtain

x cX sX x sX xX
1 1 2 2 1 2
= − = +, � (3.71)

where c X s X= =cos , sinτ τ
3 3

. For the deformation specified by (3.68) and (3.72), the deformation 
gradient is given by

F
c s sX cX
s c cX sX=

− − +( )
−

















τ
τ

1 2

1 2

0 0 1

( ) � (3.72)

so that J =1 and the deformation is isochoric. Further,

B

sX cX sX cX cX sX sX cX

sX cX=

+ + − + − − +

− +

1
2

1 2

2

1 2 1 2 1 2

2

1 2

τ τ τ

τ

( ) ( )( ) ( )

( ))( ) ( )

( ) ( )

cX sX cX sX cX sX
sX cX cX sX

1 2

2

1 2

2

1 2

1 2 1 2

1

1

− + −( ) −
− + −



τ τ
τ τ















� (3.73)

Since J B J= = =1 1
2

,det  and using (3.65) it follows that

3

2

1

Figure 4: Simple torsion
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B
sX cX
cX sX

sX cX cX sX X

− =
+

− −
+ − − +

1

1 2

1 2

1 2 1 2

2

1

2

1 0

0 1

1

τ
τ

τ τ τ

( )

( )

( ) ( ) ( ++















X

2

2
)

� (3.74)

Using (3.48), (3.72), and (3.73), we obtain

I I R
1 2

2 2
3= = +τ � (3.75)

ii.	 Torsion, extension, and inflation
Finally, we discuss the deformation which corresponds to simple extension along the axis of the cylinder, 
followed by simple torsion about its axis with twist τ  per unit length. As a result of a uniform extension 
along the axis the particle X  is displaced to X ' , where

X X X X X X
1 1 2 2 3 3

' ' '
, ,= = =β β α � (3.76)

and here we take α β> >0 0, .  If we now apply simple torsion to the extended cylinder, using (3.68) and 
(3.71), the final position x  of the particle X  is given by

x X X X X
1 1 3 2 3
= ( ) − ( )' ' ' '

cos sin ,τ τ

x X X X X
2 1 3 2 3
= ( ) + ( )' ' ' '

sin cosτ τ � (3.77)

x X
3 3
= '

Combining (3.76) and (3.77), we obtain the deformation

x X X X X
1 1 3 2 3
= ( ) − ( ){ }β ατ ατcos sin ,

x X X X X x X
2 1 3 2 3 3 3
= ( ) + ( ){ } =β ατ ατ αsin cos , � (3.78)

As a result of this deformation, the length of the cylinder increases or decreases depending on whether 
α >1  or α <1. Furthermore, since

x x X X
1

2

2

2 2

1

2

2

2+ = +( )β � (3.79)

The radius of the cylinder increases if β >1 and decreases if β <1. The deformation is usually referred 
to as torsion, extension, and inflation. The deformation gradient is given by

F
c s sX cX
s c cX sX=

− − +
−( )

















β β ατβ
β β ατβ

α

( )
1 2

1 2

0 0

� (3.80)

where s X c X= =sin , cos ,ατ ατ
3 3

 so that J =αβ 2 . If the material is incompressible, only isochoric 
deformations are possible, in which case

β α=
−
1

2
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Then

B

sX cX sX cX cX sX sX cX

=

+ +( ) − +( ) −( ) − +( )

−

−α ατ ατ α τ

ατ

1 2

1 2

2 2

1 2 1 2

3

2
1 2

22

1 2 1 2

1 2

1 2

2
3

2
1 2

3

2
1

cX sX sX cX cX sX cX sX

sX

−( ) +( ) + −( ) −( )

−

−α ατ α τ

α τ ++( ) −( )





















cX cX sX

2

3

2
1 2

2α τ α

� (3.81)

Since for isochoric deformation J B= =1 1,det  and

B

sX cX

cX sX

sX cX cX s

− =

+

− −( )

+ − −

1

1

2
1 2

1

2
1 2

1

2
1 2

1

2
1

0

0

α α τ

α α τ

α τ α τ

( )

( ) XX X X X
2

2 2 2

1

2

1

2

2

2
1( ) + +( )























−α α τ{ (

� (3.82)

Also I
3
1=  and from (3.81) and (3.82) using (3.48) it follows that

I R I R
1

2 1 2 2

2

2 2 2
2 2= + = + +− −α α ατ α α τ, � (3.83)

Exact solutions for problems with boundary conditions

In this section, we investigate the possibility of finding exact solutions of the equations without restriction 
on the form of the strain-energy function except for that imposed in some cases by the incompressibility 
condition.

Basic equations, boundary conditions
Restricting our attention to bodies maintained in equilibrium, the remaining equations which have to be 
satisfied for a compressible material are

ρ ρJ = 0 � (3.2.1)

and

T bij j i,
+ =ρ 0 � (3.2.2)

where

T B Bij ij ij ij= + + −
−χ δ χ χ

0 1 1

1 � (3.2.3)

and χ χ χ
0 1 1
, , −  are functions of I I

1 2
,  and I3 .

One way to maintain a body in equilibrium is to apply suitable surface tractions on its boundary. This type 
of problem gives rise to traction boundary conditions involving the stress vector. Let us consider a few 
typical examples. When a body of arbitrary shape is held in equilibrium under the action of a hydrostatic 
pressure P( )> 0  per unit area of the surface of the deformed configuration, as shown in Figure 5,

t n Pn( ) = − � (3.2.4)

As another example, consider a block extended in the 1-direction and maintained in equilibrium by 
applying a uniform
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tension T  per unit area of the deformed configuration on its end faces, as shown in Figure 6. Suppose 
that after the deformation the block occupies the region

− ≤ ≤ − ≤ ≤ − ≤ ≤a x a b x b c x c
1 2 3

, ,

The end faces x a1 = ±  are both perpendicular to the 1-direction but they have different outward unit 
normal. On the face, x a1 = −  the outward unit normal is −e1  so that our boundary condition specifies 
t e( )−

1
 and requires that

t e Te−( ) = −1 1 � (3.2.5)

But at any point on this face, t e t e T T T−( ) = − ( ) = −( )1 1 11 12 13
, , , so that an equivalent statement is

T T T T
11 12 13

0= = =, � (3.2.6)

Likewise, on the face x a1 = ,

t e Te1 1( ) = � (3.2.7)

which again rise to (3.2.6). Since we are not applying any forces to the remaining faces, the applied 
surface traction on these faces is zero. Such boundaries are said to be traction free. We use this term 
rather than “stress free” since, in many cases, the surface is not “stress free” even though it is free of 
applied traction. The vanishing of the applied traction implies

2

1

Figure 5: Equilibrium for a compressible material

Figure 6: Applied traction
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t e x b t e x b
2 2 2 2

0 0( ) = = −( ) = = −on on, � (3.2.8)

and so the stresses T T T
21 22 23
, ,  are zero on x b

2
= ± ,  but in these faces 11 0T ≠ . Similarly, the stresses 

T T T
31 32 33
, ,  are zero on x c3 = ±  but again 11 0T ≠ .

Consider next a hollow circular cylinder, as shown in Figures 7 and 8, which is held in equilibrium under 
suitable surface tractions. In the deformed configuration, let the inner and outer radii be a1  and a2 , respectively. 
The surface r a= 1  is subjected to a uniform pressure P  and the outer surface r a= 2  is traction free. 
Traction is also applied to the end faces. On the surface, r a= 1  the outward unit normal is −er  so that 
our boundary condition on this surface specifies t er−( )  and requires that

t e Per r−( ) = � (3.2.9)

on r a=
1
.  The outer surface is traction free provided

t er( ) = 0 � (3.2.10)

on r a= 2 . Now t T ni ij i=  and e r x xr = ( )−1
1 2

0, , , so that on r a= 2 ,

t e T x ai r i( ) = =α α α/ , ,
2

1 2 � (3.2.11)

Thus, a statement equivalent to (3.2.10) is

t T x
a

T x
a

t T x
a

T x
a

t T x
a

T x
1 11

1

2

12

2

2

2 21

1

2

22

2

2

3 31

1

2

32

20 0= + = = + = = +, ,
aa
2

0= � (3.2.12)

The relation (3.2.9) may be expanded similarly.
We see from the above examples that in a particular problem, we are required to solve (3.2.1) and (3.2.2) 
subject to prescribed boundary conditions. In writing down these conditions, it is important to be able to 
identify the outward unit normal to the surface under consideration and also to realize which components 

Figure 7: Traction free outer surface

=

=

−

Figure 8: Outward unit normal to the surface
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of the stress tensor are being specified by the applied surface tractions. In the above examples, the body 
is considered in the deformed configuration and T  and P  are measured per unit area in this state. It is, 
therefore, appropriate to use the Cauchy stress tensor T . In some situations, the applied forces may be 
measured per unit area of the reference configuration, in which case the Piola Kirchhoff stress tensors 
are more useful.
For an incompressible material, there is no volume change so that we have the condition

J =1� (3.2.13)

and the density has the value ρ0  for all time. Equation (3.2.1) therefore reduces to an identity and the 
equations which have to be satisfied in this case are (3.2.13) and (3.2.2),

T p W B W Bij ij ij ij= − + − −δ 2 2
1 2

1 � (3.2.14)

p  being an unknown scalar. As we shall see later, in a particular problem p  is determined by equilibrium 
equations (3.2.2) and the specified boundary conditions.
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