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ABSTRACT
One of the major importance of modeling in time series is to forecast future values of that series which 
requires the use of appropriate method to fit the time series data that are dependent on the nature of the data. 
However, real-life data are mostly non-stationary and nonlinear. This will be a problem when a model is in 
appropriately applied to data that does not fits in, the result of the outcome will be inaccurate and this will 
not give the clear picture of what the data entails in the future events. In this study, the performances of the 
smooth transition autoregressive (STAR) and the self-exciting threshold autoregressive (SETAR) models 
of different orders and regimens were compared on different forms of nonlinear cases of autoregressive 
under violation of stationarity assumption. Simulated data with features of nonlinearity and non-stationarity 
were used to compare the performance of the models. The relative performances of the models were 
examined with a view to identify the best models at orders 1, 2, and 3, and regimen 2 when fitted to linear, 
trigonometric, exponential, and polynomial autoregressive functions. It was concluded that the SETAR (2, 
1) is the best model followed by SETAR (2, 2) to fit linear data, whereas the SETAR (2, 2) and STAR (2, 3) 
are considered to be the best for an exponential and SETAR (2, 2) and STAR (2, 2) for a polynomial data.
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INTRODUCTION

A time series forecasting is the use of model to 
predict the future values based on the past values. 
Predictions were made when the actual outcome of 
event(s) may not be known until some future time 
(Akeyede et al, 2015).[1] The goal of time series is 
to forecast and identify meaningful characteristics 
in data that can be used in making statements 
about the future outcomes. Time series is generally 
classified into stationary and non-stationary. 
A stationary time series has its statistical properties 
such as the mean, variance, autocovariance, and 
autocorrelation are all constant over time. Since 
its characteristics are constant, then a stationarized 
time series can be easily predicted because all 
its statistical properties that were constant in the 
past will for likely be constant at future. On the 
other hand, a non-stationary time series is the one 
whose statistical properties change over time. 

Moreover, this need to be further converted into 
stationary data because using non-stationary time 
series, especially in financial models produces 
unreliable result and leads to poor understanding 
and forecasting (Akeyede et al, 2016).[2]

The proposal of nonlinear models is one of the 
most important methods in time series analysis, 
which has a wide potential for predicting 
various phenomena, including physical sciences, 
engineering, and economics, by studying the 
characteristics of random disturbances to arrive at 
accurate predictions. The most important method 
of dealing with nonlinear time series data is the 
threshold autoregressive model (TAR) which was 
developed by Tong (1978)[3] and has received 
a great attention in the nonlinear time series. 
Literature has been widely used in various fields 
such as econometrics and finance among others 
(see Tong (1978)[3] and Akeyede et al, 2016[4]).
TAR is one of the nonlinear models applicable 
nowadays. It was developed by Tong (1978)[3] and 
discussed in detail by Tong and Lim (1980)[5] and 
later by Tong (1983).[6] TARs are often difficult 
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to model and this is due to the fact that it lacks 
a suitable modeling procedure and inability to 
identify the threshold variables and estimate the 
threshold values (Aydin, 2015 and Clement and 
Smith, 1997 and 2001).[7-9]

Therefore, this study considers some nonlinear 
threshold models, namely smooth transition 
autoregressive (STAR) models and the self-exciting 
threshold autoregressive (SETAR) models of 
different orders. Their forecast performances were 
examined on different forms of nonlinear classes 
of autoregressive under violation of stationarity 
assumption through Monte Carlo simulation.

Self-Exiting Threshold Autoregressive Models

The SETAR model is arguably the most widely 
used scalar nonlinear time series model. It is 
an extension of the piecewise linear regression 
model (or segmented linear regression model) 
with structural changes occurring in the threshold 
space. In the time series literature, the SETAR 
model was proposed by Tong (1978)[10] and has 
been widely used for the publication of Tong and 
Lim (1980)[5], Keenan (1985)[10], Peel (1998).[11] 
Lundbergh et al (2002)[12] and Jorge et al (2005).[13] 
The simple case of the two-regimen SETAR model 
is indicated below.
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where ϵt is a sequence of independently and 
identically distributed random variables with 
mean zero and unit variance, ∅i and θi are real-
valued parameters such that ∅i=θi for some i, d is 
a positive integer denoting the delay, and r is the 
threshold value. Often, this further assumes that ϵt 
follows N (0,1). We use the same order p for both 
regimens. This is purely for simplicity as different 
orders can easily be used (Akeyede et al, 2015).[14]

Smooth Transition Autoregressive (STAR) 
Model

Another class of nonlinear time series models 
is smooth transition autoregressive (STAR) 
models. The STAR model is similar to the SETAR 
model. The main difference between these two 
models is the mechanism governing the transition 

between regimens. A two-regimen model will be 
considered here. The concept can be extended to 
the case with more than two regimens (Fırat, 2007, 
Guidolin,2009 and Ismail, 2006).[15-17]

A criticism of the SETAR model is that its 
conditional mean equation is not continuous. The 
thresholds (rj) are the discontinuity points of the 
conditional mean function (μt) (Samson et al, 
2015, Sarantis, 1999, and Tayyab, 2012).[18-20] In 
response to this criticism, the STAR models have 
been proposed. Consider time series Xt that follows 
a two-regimen STAR (p) model of the form
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Where d is the delay parameter, Δ and s are 
parameters representing the location and scale of 
model transition, and F(·) is a smooth transition 
function. In practice, F(·) often assumes one of 
three forms, namely logistic, exponential, or a 
cumulative distribution function. The conditional 
mean of a STAR model is a weighted linear 
combination between the following two equations:
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above also determine the properties of a STAR 
model. For instance, a prerequisite for the 
stationary of a STAR model is that all zeros of 
both AR polynomials are outside the unit circle. 
An advantage of the STAR model over the SETAR 
model is that the conditional mean function is 
differentiable. However, experience shows that 
the transition parameters Δ and s of a STAR model 
are hard to estimate. In particular, most empirical 
studies show that standard errors of the estimates 
of Δ and s are often quite large, resulting in t ratios 
of about 1.0. This uncertainty leads to various 
complications in interpreting an estimated STAR 
model (Terasvirta, 2005, Tsay 1986, Umer et al, 
2018 and Zhou, 2010).[21-24]
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MATERIALS AND METHODS

Simulation studies were conducted to investigate 
the performance of autoregressive, SETA and 
STAR models for fitting different general classes of 
nonlinear autoregressive time series earlier stated. 
The effect of sample size and the non-stationarity 
of the models were examined on each of the general 
linear and nonlinear data simulated. Each model is 
subjected to 1000 replication simulation at different 
sizes for non-stationary data structures.

Criteria for Assessment of the Study

The goodness of fit for each model was assessed 
using common series, mean square error (MSE), 
mean absolute percentage error (MAPE), and the 
Akaike information criteria (AIC). The model with 
the lowest criteria is the best among the models 
for the simulated data.

Mean squared error
The mean squared error (MSE) of an estimator 
measures the average of the squares of the “errors,” 
that is, the difference between the estimator and 
what is estimated.
If Ŷ  is a vector of estimated values, and Y is the 
vector of the true values, then the (estimated) MSE
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Mean absolute percentage error (MAPE)
The mean absolute percentage error (MAPE), also 
known as mean absolute percentage deviation 
(MAPD), is a measure of accuracy of a method for 
constructing fitted time series values in statistics, 
specifically in model fitting. It usually expresses 
accuracy as a percentage, and is defined by the 
formula:
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where At is the actual value and Ft is the forecast 
value. The difference between At and Ft is divided 
by the actual value At again. The absolute value 
in this calculation is summed for every fitted or 
forecasted point in time and divided again by the 
number of fitted points n. Multiplying by 100 
makes it a percentage error.

Akaike information criteria
Supposing we have a statistical model of some 
data, let k be the number of estimated parameters 
included in the model and n, sample size; then, the 
AIC value of the model is

( )2 2ˆAIC nln k= +

where

2ˆ Residual sumof squares
n

 =
.

The ln (likelihood) of the model given in the data, 
is readily available in statistical output and reflects 
the overall fit of the model.

Selection Rule

We compute the MSE, MAPE, AIC, and MAPE 
for n = 20, 40, 60, 80, 150, 100, 120, 140, 160, 
180, and 200 for each case model, and select the 
model that has the minimum criteria values as the 
best. Note that three orders of autoregressive were 
considered in each case and situation.

Models Selected for Simulation

Data are generated from several linear and 
nonlinear second orders of general classes of 
autoregressive models as given below:
Model 1: AR (2): Xti = 0.7 Xti-1−0.6 Xti-2+et
Model 2: TR (2): Xti = 0.7 sin (Xti-1)−0.6 cos (Xti-2)+et
Model 3: EX (2): Xti = 0.7 Xti-2−exp (0.6Xti-2)+et
Model 4: PL (2): Xti = 0 7 0 6

1

2

2
. .X X eti ti t− −− +

Xti~N(2,4) and eti~N(1,2)
t = 1, 2,…, 20, 40, 60, 80, 100, 120, 140, 160, 180 
and 200. i = 1, 2,…, 1000
The model 1, 2, 3, and 4 are linear, trigonometry, 
exponential, and polynomial autoregressive 
functions, respectively, with coefficients of 
Xt-1 being 0.7, Xt-2 being −0.6. Simulation 
studies were conducted to investigate the 
performance of SETAR and STAR models for 
fitting different general classes of linear and 
nonlinear autoregressive time series stated 
above. The effect of sample size and the non-
stationarity of the models were also examined 
on the models.
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DATA ANALYSIS

The performances of the fitted model on the basis 
of the three criteria were displayed in Tables 1-12 
as follows
Table 1 shows the relative performance of the 
fitted models at different levels of sample size 
based on MSE criteria. It was observed that 
SETAR (2,1) and SETAR (2,2) models have the 

best performance model from the various sample 
sizes to fit linear form of autoregressive models 
that can be used to forecast for future values at 
different steps ahead. SETAR (2,3) performs far 
worse than the other models from the beginning 
but as the sample size increases, the trend tends to 
be a little stable.
Table 2 shows the relative performance of the 
fitted models at different levels of sample size 

Table 1: Mean square error of self‑exciting threshold autoregressive and smooth transition autoregressive models fitted 
on AR (2): Xti=0.7Xti‑1−0.6Xti‑2+et across the sample sizes
Sample size SETAR (2,1) SETAR (2,2) SETAR (2,3) STAR (2,1) STAR (2,2) STAR (2,3)
20 3.4916 3.3893 4.8638 4.1091 4.4153 3.5648

40 3.9660 3.7852 5.8296 4.1983 4.1402 4.1849

60 4.0522 4.0157 5.3391 4.9072 4.9424 4.8346

80 3.9358 4.1073 5.0705 4.6135 4.6693 4.6003

100 3.9329 4.0630 5.1909 4.1576 4.2277 4.1639

120 3.7256 3.8715 5.0806 4.0375 4.0628 4.1595

140 3.7219 3.7614 4.5859 3.9492 3.9252 4.0130

160 3.7069 3.6009 4.0380 3.9196 3.9352 3.9730

180 3.7286 3.5142 3.9421 3.9159 3.9050 3.9380

200 3.5581 3.1785 3.9928 3.7854 3.7638 3.7683
SETAR: Self‑exciting threshold autoregressive, STAR: Smooth transition autoregressive 

Table 2: Mean square error of self‑exciting threshold autoregressive and smooth transition autoregressive models fitted 
on AR (2): Xti=0.7Xti−1‑0.6Xti‑2+et across the sample sizes
Sample size SETAR (2,1) SETAR (2,2) SETAR (2,3) STAR (2,1) STAR (2,2) STAR (2,3)
20 0.1191 0.1198 0.1196 0.1195 0.1197 0.1192

40 0.1187 0.1198 0.1196 0.1195 0.1198 0.1190

60 0.1188 0.1199 0.1193 0.1195 0.1199 0.1190

80 0.1186 0.1196 0.1190 0.1192 0.1199 0.1187

100 0.1187 0.1195 0.1193 0.1193 0.1197 0.1189

120 0.1179 0.1196 0.1194 0.1192 0.1195 0.1184

140 0.1184 0.1195 0.1192 0.1193 0.1196 0.1182

160 0.1180 0.1195 0.1189 0.1188 0.1194 0.1181

180 0.1178 0.1194 0.1186 0.1183 0.1193 0.1180

200 0.1179 0.1195 0.1187 0.1187 0.1193 0.1182
SETAR: Self‑exciting threshold autoregressive, STAR: Smooth transition autoregressive 

Table 3: Akaike information criteria of self‑exciting threshold autoregressive and smooth transition autoregressive fitted 
on AR (2): Xti=0.7 Xti−1‑0.6 Xti‑2+et models across the sample sizes
Sample size SETAR (2,1) SETAR (2,2) SETAR (2,3) STAR (2,1) STAR (2,2) STAR (2,3)
20 39.0071 31.4197 38.8472 34.2640 35.7014 30.3998

40 63.1104 64.2440 99.3844 69.3870 67.8300 65.2588

60 101.9361 102.0535 145.4402 101.4427 101.8713 102.5476

80 129.4853 112.8418 213.8843 128.3188 129.2798 130.0890

100 150.9370 148.1906 247.2784 148.4934 150.1648 150.6457

120 171.8259 170.4354 254.7929 173.4744 174.2252 179.0462

140 197.9930 197.4720 255.5188 198.2904 197.4382 202.5348

160 223.6301 225.6387 268.5576 224.5566 225.1940 228.7234

180 250.8862 247.9722 275.4175 251.7081 251.2052 254.7187

200 267.8437 264.5026 288.6473 272.2327 271.0831 273.3267
SETAR: Self‑exciting threshold autoregressive, STAR: Smooth transition autoregressive 
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based on MAPE criteria. SETAR (2,1) followed 
by STAR (2,3) models at different orders shows 
the best performance from the various sample 
sizes to linear form of autoregressive models
Table 3 shows the relative performance of the 
fitted models at different levels of sample size 
based on AIC criteria. It was observed that SETAR 
(2, 1) and SETAR (2, 2) of the models leading the 
other models at different orders show the best 

performance model from the various sample sizes 
to linear form of autoregressive models that can be 
used to forecast for future values at different steps 
ahead. SETAR (2, 3) performs far worse than the 
other models as the trends increase higher than the 
other models but later, the trend reduces and rate 
close to the other models.
Table 4 shows the relative performance of the fitted 
models at different levels of sample size based on 

Table 4: Mean square error of self‑exciting threshold autoregressive and smooth transition autoregressive models fitted 
on TR (2): Xti=0.7 sin (Xti‑1)−0.6 cos (Xti‑2)+et across the sample sizes
Sample size SETAR (2,1) SETAR (2,2) SETAR (2,3) STAR (2,1) STAR (2,2) STAR (2,3)
20 3.1317 3.9799 5.1181 4.9133 6.2620 2.9152

40 3.8272 4.0402 9.2536 4.6781 5.2848 4.3708

60 4.7649 5.2886 9.2200 5.0171 6.0036 5.0686

80 4.3264 5.0239 10.5929 5.0076 5.5915 5.1949

100 4.0247 4.4264 9.2359 4.0140 4.9518 4.4327

120 4.1275 4.3633 10.8565 4.1048 4.8799 4.5714

140 3.9586 4.1253 14.9776 3.9784 4.6057 4.2851

160 3.9487 4.0205 18.3391 3.8492 4.6082 4.3944

180 3.9404 3.9853 12.3866 3.6468 4.5457 3.9673

200 3.8162 3.9065 15.6097 3.5532 4.3554 4.4240
SETAR: Self‑exciting threshold autoregressive, STAR: Smooth transition autoregressive 

Table 5: Mean absolute percentage error of self‑exciting threshold autoregressive and smooth transition autoregressive 
models fitted on TR (2): Xti=0.7 sin (Xti‑1)−0.6 cos (Xti‑2)+et across the sample sizes
Sample size SETAR (2,1) SETAR (2,2) SETAR (2,3) STAR (2,1) STAR (2,2) STAR (2,3)
20 1.8096 1.2232 0.3113 2.0948 1.7716 0.3272

40 1.6180 1.1999 0.6146 1.7030 1.3015 0.4018

60 2.1354 1.4137 0.7799 2.2351 1.5232 0.2263

80 1.7134 1.1274 0.2609 2.1014 1.5958 0.1241

100 1.5243 1.1416 0.2443 1.4898 1.2845 0.1790

120 1.7059 2.3918 0.9492 1.3879 2.2063 0.2119

140 1.6949 2.6559 0.4590 1.7847 2.8363 0.5093

160 1.6691 3.0106 0.3566 1.6834 3.9757 0.6079

180 1.6578 3.1846 0.4930 1.6911 3.2817 0.1740

200 1.5990 2.0819 0.9717 1.6339 3.5406 0.1868
SETAR: Self‑exciting threshold autoregressive, STAR: Smooth transition autoregressive 

Table 6: Akaike information criteria of self‑exciting threshold autoregressive and smooth transition autoregressive 
models fitted on TR (2): Xti=0.7 sin (Xti‑1)−0.6 cos (Xti‑2)+et across the sample sizes
Sample size SETAR (2,1) SETAR (2,2) SETAR (2,3) STAR (2,1) STAR (2,2) STAR (2,3)
20 36.8313 41.6249 29.0102 37.8389 42.6899 29.3989

40 67.6850 69.85207 132.3078 67.7157 72.5929 66.9982

60 107.6771 113.9337 216.4913 108.4712 113.5413 105.3834

80 131.1796 143.1360 247.8224 138.4694 143.7004 139.8138

100 153.2460 162.7592 333.0052 154.9776 165.9744 156.8997

120 184.1218 190.7881 363.8278 185.4591 196.2145 190.3778

140 206.6239 212.3983 399.2453 209.3212 219.8211 211.7200

160 233.7404 236.6254 402.7533 231.6594 250.4544 244.8519

180 260.8318 262.8701 479.2933 258.8910 278.5537 256.0564

200 281.8490 286.5255 523.4700 279.5675 300.2820 305.4102
SETAR: Self‑exciting threshold autoregressive, STAR: Smooth transition autoregressive 



Abubakar, et al.: A Monte Carlo Study of Empirical Performance of Threshold Autoregressive Models 

AJMS/Jan-Mar-2022/Vol 6/Issue 1� 40

MSE criteria. It was observed that SETAR (2, 1) and 
STAR (2, 1) of the models leading the other models 
at smaller and larger sample sizes, respectively, to 
fit the trigonometric form of autoregressive and 
therefore can be used to forecast for future values 
at different steps ahead for the respective sample 
sizes. SETAR (2, 3) performs far worse than the 
other models as the trends increases.

Table 5 shows the relative performance of the 
fitted models at different levels of sample size 
based on MAPE criteria. It was observed that 
SETAR (2, 3) followed by STAR (2, 3) shows the 
best performance from the various sample sizes to 
trigonometric form of autoregressive models.
Table 6 shows the relative performance of the 
fitted models at different levels of sample size 

Table 7: Mean square error of self‑exciting threshold autoregressive and smooth transition autoregressive models fitted 
on EX (2): Xti=0.7 Xti‑2)−exp (0.6Xti‑2)+et across the sample sizes
Sample size SETAR (2,1) SETAR (2,2) SETAR (2,3) STAR (2,1) STAR (2,2) STAR (2,3)
20 3.02894 2.8190 3.6895 3.3292 4.2523 3.8184

40 3.6768 3.1874 5.9413 4.3560 4.1094 3.5792

60 4.3777 4.1330 6.5362 4.7981 4.8647 4.2307

80 4.3474 4.1861 6.5450 4.6497 4.6758 4.3435

100 4.1241 3.9152 6.2770 4.5205 4.2475 4.1224

120 4.0419 3.9094 5.4367 4.1803 4.1205 4.0421

140 3.9211 3.8008 5.7090 4.1060 4.0306 3.9237

160 3.9863 4.1000 4.6101 4.0739 4.3352 3.9861

180 4.0032 4.1030 4.7183 4.1407 4.1641 3.8738

200 3.8448 3.8091 4.8949 4.1562 3.9389 3.7661
SETAR: Self‑exciting threshold autoregressive, STAR: Smooth transition autoregressive 

Table 8: Mean absolute percentage error of self‑exciting threshold autoregressive and smooth transition autoregressive 
models fitted on EX (2): Xti=0.7 Xti‑2−exp (0.6Xti‑2)+et across the sample sizes
Sample size SETAR (2,1) SETAR (2,2) SETAR (2,3) STAR (2,1) STAR (2,2) STAR (2,3)
20 1.3342 0.4047 0.1393 2.2055 1.3890 0.0856

40 1.6161 0.9140 0.1453 1.5373 1.0737 0.0353

60 1.8865 1.1834 0.1516 2.0111 1.3406 0.0166

80 1.5033 1.1021 0.0433 1.4952 1.4610 0.0251

100 1.7352 1.0882 0.0691 1.7313 1.2953 0.0164

120 1.6202 1.1602 0.0795 1.6204 1.1695 0.0255

140 1.5126 1.0245 0.1535 1.5145 0.9938 0.0239

160 2.7140 0.9093 0.1059 2.7156 0.9457 0.0128

180 2.5708 1.2089 0.1491 2.7088 1.0777 0.0205

200 2.9151 1.1651 0.2868 3.0500 1.2230 0.0284
SETAR: Self‑exciting threshold autoregressive, STAR: Smooth transition autoregressive 

Table 9: Akaike information criteria of self‑exciting threshold autoregressive and smooth transition autoregressive 
models fitted on EX (2): Xti=0.7 Xti‑2−exp (0.6Xti‑2)+et across the Sample Sizes
Sample size SETAR (2,1) SETAR (2,2) SETAR (2,3) STAR (2,1) STAR (2,2) STAR (2,3)
20 28.1502 34.7274 33.7870 37.4488 34.9490 32.0544

40 66.0818 60.3679 99.7018 66.8613 62.5307 66.8624

60 102.5909 99.1399 122.6586 108.6190 100.9202 102.0925

80 131.5660 128.5413 181.0831 133.4939 129.3918 130.9438

100 155.6841 150.4854 225.2943 157.6435 150.6339 152.6946

120 181.6056 177.6071 298.4070 183.6111 175.9158 179.6469

140 205.2917 200.9311 334.8540 207.3851 201.1480 192.3197

160 235.2588 231.6578 376.7380 237.2519 240.6836 228.7670

180 263.6756 258.8677 397.9810 259.7636 262.7697 254.1874

200 283.3450 271.4776 400.4040 281.2083 280.1821 266.0767
SETAR: Self‑exciting threshold autoregressive, STAR: Smooth transition autoregressive 
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based on AIC criteria. It was observed that 
SETAR (2, 1) and STAR (2, 1) of the models 
leading the other models at smaller and larger 
sample sizes, respectively, to fit the trigonometric 
form of autoregressive and therefore can be 
used to forecast for future values at different 
steps ahead for the respective sample sizes. 
SETAR (2, 3) performs far worse than the other 
models as the trends increases.

Table 7 shows the relative performance of the 
fitted models at different levels of sample size 
based on MSE criteria. It was observed that 
SETAR (2, 2) and STAR (2, 3) of the models 
exceed the other models at lower and higher 
sample sizes, respectively, to fit exponential 
form of autoregressive models and can be used to 
forecast for future values at different steps ahead. 
SETAR (2, 3) performs far worse than the other 

Table 10: Mean square error of self‑exciting threshold autoregressive and smooth transition autoregressive models fitted 
on PL (2): Xti=0 7 0 6

1

2

2
. .X X eti ti t− −− +  across the sample sizes

Sample size SETAR (2,1) SETAR (2,2) SETAR (2,3) STAR (2,1) STAR (2,2) STAR (2,3)
20 853.4312 587.3325 757.1245 645.3714 395.0563 745.3714

40 793.5645 477.3434 703.3665 585.3477 337.4387 725.3426

60 777.1982 398.0101 694.7014 503.1258 320.3332 703.1235

80 741.2009 387.4829 659.2508 567.5661 304.9870 687.5608

100 721.0786 218.8977 646.2354 517.8725 299.4432 657.7815

120 693.3134 197.4535 612.0578 414.1761 282.8970 624.1766

140 656.0975 193.7908 585.3008 460.1515 270.0070 616.1530

160 614.7413 190.0952 548.6817 415.3444 190.0170 595.3423

180 583.3406 190.0163 517.3045 387.2332 189.3435 587.2315

200 551.9715 189.8818 492.1313 377.1748 179.6745 567.1702
SETAR: Self‑exciting threshold autoregressive, STAR: Smooth transition autoregressive 

Table 11: Mean absolute percentage error of self‑exciting threshold autoregressive and smooth transition autoregressive 
models fitted on PL (2): Xti=0 7 0 6

1

2

2
. .X X eti ti t− −− +  across the sample sizes

Sample size SETAR (2,1) SETAR (2,2) SETAR (2,3) STAR (2,1) STAR (2,2) STAR (2,3)
20 1340.7926 980.6726 1995.2816 1897.5615 18.0715 1255.9872

40 1320.4634 943.7916 1875.5932 1858.2432 17.6511 1243.0681

60 1318.8533 898.0138 1846.5414 1787.5018 17.2596 1223.0994

80 1298.3176 552.9945 1787.3855 1508.1065 16.7551 1204.0231

100 1257.6158 521.8885 1654.4346 1210.8366 16.5065 1169.0772

120 1244.9438 396.4515 1574.4774 1198.8048 16.1365 1172.0032

140 1216.2613 389.9954 1327.0113 1186.8262 16.0938 1156.7621

160 1183.6763 382.0065 1225.5437 1156.9183 15.9967 1135.0931

180 1165.5827 367.8916 1203.2573 1123.6213 15.6539 1124.8775

200 1153.0547 367.8731 1162.7307 1020.4163 15.3027 1090.0752
SETAR: Self‑exciting threshold autoregressive, STAR: Smooth transition autoregressive 

Table 12: Akaike information criteria of self‑exciting threshold autoregressive and smooth transition autoregressive 
models fitted on PL (2): Xti=0 7 0 6

1

2

2
. .X X eti ti t− −− +  across the sample sizes

Sample size SETAR (2,1) SETAR (2,2) SETAR (2,3) STAR (2,1) STAR (2,2) STAR (2,3)
20 1340.7912 980.6720 1995.2842 1997.5645 118.0715 1010.0173

40 1150.4624 943.7914 1875.5967 1858.2445 117.6511 1009.1632

60 1188.8505 898.0165 1786.5432 1787.5050 117.2596 918.7866

80 1108.3111 552.9954 1687.3822 1508.1068 116.7551 918.7016

100 1097.6128 521.8885 1664.4313 1210.8318 116.5065 908.6115

120 1074.9462 396.4519 1574.4708 998.8074 116.1365 908.5015

140 1046.2612 389.9903 1527.0154 886.8266 116.0938 908.4335

160 1033.6735 382.0054 1485.5414 860.9141 115.9967 908.2214

180 1027.5814 367.8913 1453.2584 753.6258 115.6539 872.1825

200 1013.0575 367.8754 1362.7303 720.4166 115.3027 821.1074
SETAR: Self‑exciting threshold autoregressive, STAR: Smooth transition autoregressive 
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models as the trends increase higher than the other 
models.
Table 8 shows the relative performance of the 
fitted models at different levels of sample size 
based on AIC criteria. It was observed that 
SETAR (2,3) followed by STAR (2,3) models 
leading show the best performance model from 
the various sample sizes to fit exponential form 
of autoregressive models and therefore can be 
used to forecast for future values at different steps 
ahead. SETAR (2, 3) performs far worse than the 
other models as the trends increase higher than the 
other models.
Table 9 shows the relative performance of the 
fitted models at different levels of sample size 
based on AIC criteria. It was observed that 
SETAR (2, 2) and STAR (2, 3) of the models 
exceed the other models at lower and higher 
sample sizes, respectively, to fit exponential form 
of autoregressive models and therefore can be 
used to forecast for future values at different steps 
ahead. SETAR (2, 3) performs far worse than the 
other models as the trends increase higher than the 
other models.
Table 10 shows the relative performance of the 
fitted models at different levels of sample size 
based on AIC criteria. It was observed that STAR 
(2, 2) and SETAR (2, 2) models supersede the 
other models at lower and higher sample sizes, 
respectively, which show the best performance 
model to fit polynomial form of autoregressive 
models, and therefore, they can be used to forecast 
for future values for the respective sample sizes 
at different steps ahead. SETAR (2, 3) performs 
worse than the other models as the trends increase 
higher than the other models.
Table 11 shows the relative performance of 
the fitted models at different levels of sample 
size based on AIC criteria. It was observed 
that STAR (2, 2) and SETAR (2, 2) models 
supersede the other models at lower and higher 
sample sizes, respectively, which show the best 
performance model to fit polynomial form of 
autoregressive models, and therefore, they can 
be used to forecast for future values for the 
respective sample sizes at different steps ahead. 
SETAR (2, 3) performs worse than the other 
models as the trends increase higher than the 
other models.
Table 12 shows the relative performance of the 
fitted models at different levels of sample size 
based on AIC criteria. It was observed that STAR 

(2, 2) and SETAR (2, 2) models supersede the 
other models at lower and higher sample sizes, 
respectively, which show the best performance 
model to fit polynomial form of autoregressive 
models, and therefore, they can be used to forecast 
for future values for the respective sample sizes 
at different steps ahead. SETAR (2, 3) performs 
worse than the other models as the trends increase 
higher than the other models.[25]

CONCLUSION

In this study, comparative performance of the 
nonlinear models with non-stationarity features was 
carried out. It was concluded that the SETAR (2, 1) 
is the best model followed by SETAR (2, 2) to fit 
linear data, whereas SETAR (2, 2) forecasted better 
at different steps ahead. In fitting trigonometric 
nonlinear form of data, it can be seen that SETAR 
(2, 1) and STAR (2, 1) are known to be the best at 
lower and higher sample sizes, respectively, while 
in forecasting, STAR (2, 1) outperforms SETAR 
(2, 1). The SETAR (2, 2) and STAR (2, 3) are 
considered to be the best for an exponential and 
SETAR (2, 2) and STAR (2, 2) for a polynomial 
data. However, SETAR (2, 2) is shown to have the 
best forecast for both data.
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