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ABSTRACT

This article considered an improved multi-derivative Hybrid linear multistep methods (IMDHLMM) for
direct solution of third-order ordinary differential equations. Power series was used as the basis function
in the derivation of the method. An approximate solution from the basis function was interpolated at
some selected off-grid points while the third derivative of the approximate solution was collocated at all
grid and off-grid points to generate a system of linear equations for the determination of the unknown
parameters. The basic properties of the method such as order, consistency, zero stability, region of
absolute stability and convergence was tested. The method was implemented in block mode to solve third
order ordinary differential equations inlcuding Genesio equation to demonstrate the usability and
efficiency of the methods. The absolute error obtained in the numerical experiments showed a better
performance of the present method over some of the existing methods in the literature.

Keywords: Ordinary differential equation, third-order, hybrid, interpolation and collocation, boundary
layer, genesio equation

INTRODUCTION

Over the years, attempts have been made at solving ordinary differential equations which frequently
occur in different area of study and discipline with several authors coming out to develop their own
methods of solution. Some of the solutions obtained by the authors are analytical, while others seeks to
obtaining the numerical solutions to the the problems.

Hence, this article discussed the approximate solution to general third-order ordinary differential

equations using the an Improved Multi-Derivative Hybrid Linear Multistep Methods (IMDHLMM).
Thus, we seek to find numerical solution to equation of the form:

Yy =flx, yx), ¥'(x), y'(x)),  y(@) =ye ¥'(a) =68, y'(a) =yn 1)
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where a, y,, 6y, Yy, and f is a continuous function and satisfies a Lipschitz condition as given in [4].

The solution of (1) is conventionally solved by first reducing it to equivalent first-order differential
equation, which have been considered by authors [1], [2], [3], and others. In like manner, authors such as
[4], [5], [6], [71. 8], [9], to mention but few, have developed different method to solving equation (1)
with each coming out with various degree of results.

In recent times, authors ([6], [7], [8], [9], [10]) have made tremendous progress in developing methods
for the solution of (1) without reduction to equivalent first-order ordinary differential equation with each
coming out with varying degree of successes in their approach. Many other numerical approaches has
been considered by ([11], [12], [13], [14], [15], [16], [17], [18], [19])

While the search for more accurate numerical methods continues. This article develops an improved
multi-derivative hybrid linear multistep methods (IMDHLMMs), implemented in block mode, for
directly solution of equation (1). The article is arranged as follows: Section 1 is an introduction, Section
2 discusses how the methods were derived, and Section 3 analyses the method’s basic properties. Section
4 gives numerical results to show the advantages of speed and accuracy. Section 5 provides a summary
and conclusion.

Derivation of the Block Method

The solution of (1) is considered in the interval [0,4] by allowing y(x) to be approximated by partial sum
of power series polynomial of the form

17

y(x) = p(x) = Z ajx’
=0

(2)

where x is continuously differentiable and a;’s are parameters to be determine. In order to apply the
procedure of collocation and interpolation to (2),third, fourth and fifth derivatives are obtained as:

Y@ =P = )G - DG - D,
j=3

. ®3)
Y@ (x) = Z JG =10 =2)G - Daxi*,
and i X
YO @) = Z JG =10 ~2)( =3 ~ Dap™.
=5
(5)

respectively. Note that the following are equivalent:
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V"0, y(x),y' (x),y" (%) = fx,y(x), ¥ (%), " (), y P (x, y(x), y'(x), y" (%))
~ g(x,y(x),y'(x),y" (%)),
and Y& (o, y(x),y' (), y" (%)) = y(x,y(x), y'(x), ¥" (x)).

Interpolating (2) at x = xp,4;,j =0, 1, % and collocating (3) to (5) at x = x,4;,j =0, 1, 2,3, and 4
yield the system of equations that can be written in matrix form

XA=B (6)
where,
1 x, x2 x3 xt x5 x8 X} o x5
1 Xnp1 Xher Xoer Xner Xn1 Xp41 X741 S
1 x x2 5 x3 ., Xt x> 5 x® 5 x5 o x7,
n+s n+ n+s n+ nty n+s nty n+s
0 0 0 6 24x,  60x2  120x3  210x} .. 4080xi*
0 0 0 6 24x,,1 60x2.; 120x3,, 210x},, .. 4080xi%,
0 0 0 6 24x,,, 60x2,, 120x3,, 210x},, .. 4080xi%,
0 0 0 6 24x,,3 60x2,5 120x3,; 210x},; .. 4080xi%i,
0 0 0 6 24x,,4 60x2,, 120x3,, 210x},, .. 4080xi%,
0 0 0 0 24 60x,  120x2  360x3 .. 57120x}3
X=lo o 0 0 24 60x,41 120x%,, 360x3,, .. 57120x}%, |
0 0 0 0 24 60x,,, 120x%,, 360x3,, .. 57120x.3,
0 0 0 0 24 60x,.5 120x%,; 360x3,; .. 57120x.3;
0 0 0 0 24 60xp44 120x%,, 360x3,, .. 57120x%3,
0 0 0 0 0 120 720x,  2520x2 .. 742560x}?
0 0 0 0 0 120 120x,4, 720x%,, .. 742560x}2,
0 0 0 0 0 120 120x,4, 720x%2,, .. 742560x12,
0 0 0 0 0 120 120x,43 720x2,5 .. 742560x12,
0 0 0 0 0 120 120xp44 720x2,, .. 742560x}2,

B = (}’n» Y+ ¥V 7 for fravr frvz favs fava On Inet Inez Gnesr Inva Yo Ve v Yotz Vars) Vn+4)
2

A = (o, a1, a3, a3, Ay, As, Ag, A7, - A17). Solving equation (6) for a;’s using Gaussian elimination
methods and substitute into equation (2), yields after simple simplification the continuous scheme

3 3 3
y() = aoYn + A1¥ns1 +azy 7+ h° Z Bifn+j + h* Z Hign+j + R Z Vi¥n+j
S =0 7=0 7=0
(7)

where a;, B;, uj, and v; are the coefficients that define the scheme. The coefficients are presented in the

appendix. Evaluating (7) and its first and second derivatives at t =1, 2, 3, 4 yields the proposed
improved multi-derivative hybrid Linear multistep method whose formulas are as presented in equations
(8), (9), (10), and (11).
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2 3 24 ,
Y3+;J’0_§ Y1~ 35y7—* mm
+h5< 1409710531 3416922763 3915971533 , 631116727 1669553929
850195906560 /> ~ 503819796480 /2~ 108825076039680 '° T 108825076039680 '* ~ 425097953280
+h4< 5549931977 5771699359 12002518379 4006875659 1751089 )
72550050693120 94 T 425097953280 Y3 T 850195906560 I ~ 6218575773696 I° ~ 1761607680 I
+h3< 20462244857 40687537171 2216650977353 179968881137 9616126523 )
77510737920 '? 463743221760 '3  652950456238080 ’° ' 652950456238080 ’* 66249031680 f
P ,
_—— p— =%
Ya 7}’0 5}’1 35}’7 mm
s ( 5022074429 1026254197 2098758707 6645846967 1546338551 )
425097953280 3 T 251909898240 72 T 54412538019840 '° " 54412538019840 ¢ T 212548976640 ' *
+h4< 48035230175 923402071 1781215619 9253967431 1751089 )
21765015207936 9% ~ 30364139520 92 " 60728279040 91 T 12091675115520 9° ~ 880803840 I2
15056727047 11763238763 1426133897143 3822753755633 55717322851

al

and additional schemes.

38755368960 fat 33124515840 fat 326475228119040 fot

326475228119040 fat 231871610880

)

)

9 4 7
h)’0+ Yo t+ 35 g}ﬁ:*zm
+h5( 825232412987 83472199649 , 162487855967 158550905299 60478318517 )
1585736822292480 ° ~ 1585736822292480 '* ' 6194284462080 '~ 7341374177280 ' " 12388568924160 '*
" ( 417824978509 2873324514901 4655414249 3277715471 726688348831 )
12388568924160 7' T 288315785871360 9° * 215922769920 92 ~ 112623353856 9° * 1057157881528320 %
. (37934112731417 | 570462138117151 23527134155959 1063525082333 6537044514007 )
74331413542960 /' T 9514420033754880 1° T 9514420933754880 1* ~ 14682748354560 '2 T 74331413544960 °
53 4
Y1 7)’0 5}’1 35)/%—
+h5( 19312310167 7767827905 206716531129 , 22726604347 5588703577 )
17343996493824 ' T 10277923848192 "2~ 2220031551209472 ° T 2220031551209472 * ~ 667076788224 '*
h4( 593423765455 , 63570336899 302747477407 818247378805 1558624493 )
4440063102418944 9* T 8671998246912 9° ~ 17343996493824 I' ~ 293340344713216 7° T 302291877888 92
+h3( 2079355099441 276512096935 115660184370629 70330226423 28938028182307 )
20555847696384 1> ~ 9460361723904 1> ~ 13320189307256832 ©° T 146375706673152 /* T 104063978962944 !
VP SHE S« SN
Y2 7)/0 5)/1 35)/%—
+h5( 90290160089 882540593 192671492567 , 39230008693 94344711883 )
86719982469120 * ~ 133479530496 '~ 11100157756047360 '° " 11100157756047360 '* ~ 43359991234560 '
h4( 1055359397153 , 43879985029 30120549379 992293320949 1751089 )
22200315512094720 94 ™ 2817776803840 9% ~ 3211851202560 I' ~ 3171473644584960 7° ~ 3523215360 2
+h3( 522975129497 5547436185479 2115704584527 2329817972071 8534800286057
1868713426044 /2 ~ 104063978962944 /* ~ 13320189307256832 1° T 13320189307256832 * ~ 104063978962944
3 4
hy's =2 Yo+ y1 = 7=
h5( 7739157091 , 410760458201 588049769711 95362905149 , 259151057411 )
7883634769920 ' T 51389619240960 /2 T 11100157756047360 '°  11100157756047360 '* * 43359991234560 '
h4( 874074700867 103717630321 24264676829 1627938575639 9295556827 )
7400105170698240 94 ~ 8671998246912 3 T 1126233538560 * T 1707716577853440 9° ~ 1511459389440 92
h3(34312142375479 , 1390713386139 335044191899587 20901757410043 1474234389097 )
102779238481920 /2 T 520319894814720 * T 66600946536284160 1° ~ 66600946536284160 ** T 6757401231360
, 9 4
hy', +~Yotgn g 7=
. (345432282353 366013699741 596429599669 , 7421164890641 , 25021068923 )
7883634769920 |* T 51389619240960 ' " 11100157756047360 '° * 11100157756047360 '* 1238856892416 '
+h4( 281642390890829 363781233061 7555422985027 154143505981 6818066821 )
22200315512094720 9% ~ 3921817384960 9* " 86719982469120 I' T 117461986836480 I° ~ 302291877888 92
h3(81973160169037 | S67797677212377 4349427318B117  4967805682923271 318144558684727
102779238481920 /2 T 520319894814720 * T 5123129733560320 /° T 66600946536284160 ' * 520319894814720
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L, 4 4 8
hyo—7yo+§y1—gy%=
( 228160754671 58863752119 101782089481 119286064501 4638385771 )
108825076039680 ' ° T 326475228119040 '* ~ 1275293859840 !* T 1511459389440 '2 ~ 283398635520 ! 3
+h4< 290221147499 28979842185089 65243095903 122663007391 512238861769 )
2550587719680 I ~ 652950456238080 J° ~ 755729694720 92 T 1275293859840 93 T 217650152079360 I*
+h3< 578340504101 3230464715877 2368386895043 1620877881 202737902797 )
437243609088 1 93278636605440 '° ' 279835909816320 fa 3690987520 ' 728739348480 '3
L, 4 8
hyl——yo+5y1 Sy;=
( 2671945277 5158143311 30277403699 193213291 , 803265277 )
2550587719680 73 ~ 302291877888 2 " 326475228119040 '° ~ 12091675115520 '* " 225097953280 '
+h4< 27333529121 5557193569 115763922283 68884758673 26987977889 )
130590091247616 J* ~ 1275293859840 73 ~ 2550587719680 I* T 43530030415872 9° " 755729694720 92
+h3< 27840131411 21757699933 2218942965457 493391469061 718691098261 )
77510737920 fa 3060705263616 fs 279835909816320 fo 652950456238080 fa 5101175439360 71
L 4 8
hyz——yo+5y1 35y%=
( 433603879 607714573 20177585203 , 54225541 , 11573170423 )
510117543936 3 " 167939932160 /2 " 326475228119040 /° " 29679566192640 /* " 1275293859840 '*
+h4< 3585110495 , 651833969 31297737607 68417183197 54446957407 )
130590091247616 9* T 85019590656 9% " 850195906560 ! " 59359132385280 I° ~ 755729694720 I2
+h3<16858566317 619289560273 2463681702283 216048390353 4844614083649 )
77510737920 12 ~ 15303526318080 /2 T 391770273742848 ° * 1958851368714240 /* T 15303526318080 /*
L., 4 4 8
hY3__YO+EYI_£Y%=
( 1795414421 36729578869 8663608337 146205193 , 9153188087 )
283398635520 7° T 1511459389440 2 1 108825076039680 "° 5022695817216 '* T 1275293859840 /*
+h4< 87585604151 95051058017 5747618783 907182213247 26987977889 )
217650152079360 4 ~ 1275293859840 92 ™ 231871610880 ' T 652950456238080 J° T 755729694720 92
. <4103817603 23375083583 4671543936317 2098143356431 4334113023041 )
5167382528 12 T 56056872960 /* T 652950456238080 /° ~ 1958851368714240 /* T 15303526318080 /1
L, 4 4 8
hy4—;yo+§y1—gy%=
<2916136369 15478171741 7617937193 , 26120604821 2090793113 )
33124515840 '3~ 215922769920 /2~ 65295045623808 /° T 12091675115520 ** T 85019590656 ' *
+h4< 29750356752731 2804302625 319664208533 7297162073 65243095903 )
652950456238080 9+ ~ 19619905536 I3 T 2550587719680 I* ~ 6218575773696 ° T 755729694720 92
+h3< 321302867 2446724531691 4044250869833 4612281095679 2827606827371 )
77510737920 12 T 15303526318080 /* ~ 1958851368714240 /° T 130590091247616 /* T 5101175439360 /!

Analysis of The Method

Here, we examine the analysis of the basic properties of the proposed method, including order, error
constant, consistency, zero stability, and convergence.

Local Truncation Error And Order

In line with what has established in author [4], let the linear difference operator L associated with the
IMDHLMM be defined as
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k
LGl = ) (@3 G+ 1) = KBy Gon + 1) = R4, Gon + 1) = Ro4sy (i + 1)
j=0

J

where y(x) is an arbitrary test function that is continuously differentiable in the interval [a,b], a;, B}, ¥;
and p; are the continuous coefficients. Expanding (x, + jh), y"' (x,, + jh), y@(x, + jh) and y(x, +

jh) forj =0, 1,...,m in Taylor’s series about x,, and collecting the like terms in h and y gives

L[y(x); h] = Coy(x) + Cihy'(x) + C2h?Y"'(x) + C3h®y"'(x) + =+ + CohPy P (x) + -+ (13)

The difference operator L and the associated multi-derivative linear multistep methods are said to be of
orderp if Co=C; =Cy, = =Cp = Cpy1 = Cpyp = 0and C,13 # 0 while the term C,,,5 is called the
error constant and the local truncation is given by 1, = Cp3h®F3y @) (x )+ O(RP+

Hence, the order and error constants associated with the methods developed are given below.

Table 1: Order and error IMDHLMM

Scheme

Order

Error Constant

(8)

(9)

(10)

(11)

15

15

15

15

15

15

15

15

15

35926318
81318721447280

9600089
14397557560049

1369427567
3428616727687908

32898343
42000554914176

9600089
57590230240198

1889565353!
4200055491417687

18175756¢
42000554914176

20717741:
15000198183634
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1176863566
1050013872854421

15
1803293763
1050013872854421

15
1176863566
1050013872854421

15
20717741¢
15000198183634

3.2 Consistency
IMDHLMM is said to be consistent if the following conditions are satisfied according to [17] :

1. theorderp > 1

2. Z?:O (Zj =0

3. p()=p' (D=0
4. p"'(1) =3'a(1)

The consistency of IMDHLMM examine as follows;

(i) the order of IMDHLMM isp = 15

.. , 3 4 48
(ii) The a’s are; a, = =2, =, a; = W= 1,
+a,+ar+ > + S +1=0
ai=apta;+tart+a,=—c+-—5z =
47 B e B A A T
j=0
(iii) Also, p(r) is the first characteristic polynomial here
7
_ 4 g AT 4872 3 _
p(r) =r"+— 35 | 7—O,Whenr—1
p'(1) =4r3+2 -2 =0, whenr =1
1
(iv) Again, p""'(1) = 24r — 18rz = 6,
__ 3822753755633 4 11763238763 3 15056727047 - 55717322851 1426133897143
o(r) = r r , when
326475228119040 33124515840 38755368960 231871610880 326475228119040
r=1,3!0(1) = 6, hence, p""'(1) = 6!a(1)
Thus, conditions (1) - (4) are satisfied. This implies that IMDHLMM is consistent.
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3.3 Zero Stability

Definition 3.3.1: The linear multistep method is said to be zero stable if no root of the first characteristic
polynomial p(r) has a modulus greater than one and if every root of modulus one has multiplicity not
more significant than three (see [18]).

p(r) = det[rA — E] (14)

satisfies |rg| < 1 and every root with |r;| = 1 has multiplicity not exceeding three in the limit as h — 0.
The first characteristic polynomial for equation (8) is given by:

4 4812 3
p(r)=r1* +—r—%—; (15)

equating equation (15) to zero and solving for r gives

7
4r 48rz2 3

rt———-—-==
5 35 7
r=(111)

The root r of equation (15) for which |r| = 1 is simple (since the multiplicity of the root r is three),
hence the method for is zero stable as h — 0 by definition (see [17]).

3.4 Region Of Absolute Stability

The region of absolute stability of IMDHLMM

3, 4t 48 . \
_3 S A
Ya—ZYoT o V175 yE
5( 5022074429 1026254197 2098758707 6645846967 1546338551 )
425097953280 73 T 251900898240 V2 ' 54412538010840 !0 T 5a412538019840 /4 T 212548976640 1 |
4 48035230175 923402071 1781215619 9253967431 1751089
+h g4 — 93 91+ o oeiceon 90 T mananaaan 92
"~ 21765015207936 30364139520 60728279040 12091675115520 880803840
(15056727047 11763238763 £ 1426133897143 f 3822753755633 f 55717322851 f)
38755368960 33124515840 /3 ' 326475228119040 /0 ' 326475228119040 /4 ' 231871610880 71 J

is obtained by first considering the following two characteristic polynomials:

P(r) = 4r 48r2 3
N=r*+————=
5 35 7
(16)
and
Q( ) 314210038481 T4 858336057361 7"3 17889848827 2 1008939528537" 844291785011
- 32647522811904 2550587719680 45801799680 364369674240 163237614059520
(17)
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The stability polynomial of IMDHLMM is given by

M(r,z) = P(r) + zQ(r) (18)
7
_ T'4 + 4r 48712 3 Z( 314210038481 T4 858336057361 7"3 17889848827 5
5 35 7 32647522811904 2550587719680 45801799680
1008939528537" 844291785011 )
364369674240 163237614059520

Using r = e’? in (18) and setting to zero yields the following expression for z after simplification.

7
4663931830272 (48(e‘9)E —35(e'®)" — 28 + 15)

= 7844291785011 + 1571050192405(e'?)* + 54933507671104(e'?)3 + 63759421219428(e!?)2 + 45200490878144 e!?

(19)
(19) is then plotted using the following MapleSoft codes

complexplot(z,0 = 0..2m, filled = true, labels = ["'Re", 'Im"], color = grey)

Figure 1: Region of absolute stability of IMDHLMM

Numerical Examples

In this section, we test some linear and nonlinear numerical examples to illustrate the accuracy of the
methods. The maximum absolute error is computed as maxERR= Max|y(xi) — y;|,i = 1,..., N, where
y(x;) is the exact solution computed at the grid point and y; is an approximation to the exact solution
using the IMDHLMM. For each example, we find the absolute errors of the approximate solutions and
were compared with various existing methods in the literature. The accuracy of our method is seen in the
small error values obtained.

: The first test example considered is the linear third-order ODE

y"' ==y, y(0)=1y'(0)=-1y"(0)=1 0<x<1, h=01

135
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whose exact solution is y(x) = e~*. The numerical solution was obtained in the interval [0,1] over ten
iterations. The absolute errors of (IMDHLMM) are presented in Table 2 and Figure 2 as compared with

those of [18].

Table 2: Comparison of absolute error of problem 1 using h = 0.1

N maxErr Error in [18]
(IMDHLMM)
0.1 1.0E — 27 2.8160F — 24
0.2 1.0E — 27 1.1025F — 23
0.3 2.0F — 27 2.4162E — 23
0.4 2.0F — 27 1.797E — 23
0.5 1.0E — 27 6.3522E — 23
0.6 3.0E — 27 8.8946F — 23
0.7 3.0E — 27 1.1768E — 22
0.8 2.0F — 27 1.4936F — 22
0.9 2.0F — 27 1.8358F — 22
1 3.0F — 27 2.1997F — 22

Logqg(Absolute Errors)

10-22
10-23
10-24
10-25

10-26

10-27

—o— MaxERR in IMDHLMM

AERRn [16] 3

0.2 0.4 0.6 . 1.0
Grid Values

Figure 2: Graph of comparison of results in Table 2
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10-1ﬁ :

~ I

§ L

u‘J 10-19 |
2 i ]

2

3 oz —»— MaxERR in IMDHLMM
< AERR in [15] ]
5 I |
-l 10-25 L i
:. .———.—-—__.___.. ._'—.———.:
0.2 0.4 0.6 0.8 1.0

Grid Values

Figure 3: Graph of comparison of results in Table 3

Problem 2: The second test example considered is the oscillatory problem

y'" =3sinx, y(0)=1; y'(0)=0; y'(0)=-2; h=0.1

2
with the theoretical solution y(x) = 3cosx + -~ 2,.

The proposed method (IMDHLMM) was applied to solve the second example in [0,1] over ten iterations

and the absolute error maxERR are compared with those of [17] in the Table 3 and Figure 3.

Table 3: Comparison of absolute error of problem 2 using h = 0.1

N maxErr Errorin [17]
(IMDHLMM)

0.1 3.0E —27  5.5511F - 17
0.2 0 8.3266E — 17
0.3 3.0E —27  5.5511F - 17
0.4 40E —27  2.7755E — 16
0.5 2.0E —27  2.2204E - 16
0.6 3.0E —27  2.2204E — 16
0.7 0 6.6613E — 16
0.8 5.0E — 27 1.6653F — 15
0.9 4.0E — 27

1 3.0E — 27
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Problem 3: We look at another problem

y'"'=e* y(0)=3,

y'(0) =1,

y'(0)=5 h=0.1

Exact:y(x) = 2 + 2x% + e*

We compare the results obtained with that of Duromola 2022

Table 4: showing the exact solution and computed results from the proposed method for the
problem in example 2. With h = 0.1

IMDHLMM computed

Exact

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

3.12517091807564762481170783
3.30140275816016983392107200
3.52985880757600310398374431
3.81182469764127031782485295
4.14872127070012814684865079
4.54211880039050897487536767
4.99375270747047652162454939
5.50554092849246760457953753
6.07960311115694966380012656
6.71828182845904523536028747

3.12517091807564762481170783
3.30140275816016983392107199
3.52985880757600310398374431
3.81182469764127031782485295
4.14872127070012814684865079
4.54211880039050897487536767
4.99375270747047652162454939
5.50554092849246760457953753
6.07960311115694966380012656
6.71828182845904523536028747

Table 5: Comparing the error obtained from the proposed method with that of Duromola 2022 for
the problem in example 3. With h = 0.1

N maxErr Error in
(IMDHLMM) Duromola

(2022)
A1 0 2.8160F — 24
.2 1.10E — 26 1.1025E — 23
.3 0 24162E — 23
4 0 1.797E — 23
5 1.10E — 26 6.3522EF — 23
.6 0 8.8946F — 23
g 0 1.1768E — 22
.8 0 1.4936E — 22
9 0 1.8358E — 22
0 2.1997E — 22
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Problem 4: Application to solve nonlinear Genesio equation as seen in [17]. The chaotic Genesio
equation is given as:

y'=—ay" =By + f(y(x))

where, f(y(x)) = —yy(x) + y2(x) y(0) =0.2, y'(0)=-03, y"=0.1, x€[ab],a=12, =
2.92 and y = 6 are positive constants that satisfied aff < y. The solution of the Genesio egaution is
considered considered in [0,1] over ten iteration. The results are presented in Table 6 and further in
Figure 4.

Table 6: Solution of Genesio equation

N (IMDHLMM)
Computed
0.1 0.1706088593
0.2 0.1428350336
0.3 0.1171963714
0.4 0.09410082038
0.5 0.07384747538
0.6 0.05663133027
0.7 0.04255034761
0.8 0.03161211329
0.9 0.02374189440
1.0 0.01879379378

Problem 5: Application to a boundary layer problem

zynl + yy// =0, y(o) — y’(o) =0; yll(o) =1

139
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Figure 5: Graph of results (Boundary layer) displayed in Table 7

There is no known exact solution for the problem. The solution of the boundary layer problem is
considered in [0,1] over ten iteration. The results are presented in Table 7 and further in Figure 5.

Table 7: Solution of Boundary layer problem

N (IMDHLMM)
Computed
0.1 0.904919642523.
0.2 0.819379641120
0.3 0.742977018060.
0.4 0.675361369909!
0.5 0.616225463831:
0.6 0.565299233729.
0.7 0.522343555389
0.8 0.487144489263
0.9 0.4595084054 24
1.0 0.439258012024

CONCLUSION

This work has contributed an improved multi-derivative hybrid linear multistep method (IMDHLMM) to
solve third-order ordinary differential equations directly. The method is zero and p-stable, consistent and
convergent. The numerical results obtained from solved problems show the method’s efficiency and
accuracy advantages over existing methods in the literature. The results in Tables 2-7 and Figures 2-5
show that the method is better in accuracy and can compete well with others in the literature for solving
similar problems.
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